Home
Class 12
MATHS
If the system of equations (.^(n)C(3))x+...

If the system of equations `(.^(n)C_(3))x+(.^(n)C_(4))y+35z=0, (.^(n)C_(4))x+35y+(.^(n)C_(3))z=0 and 35x+(.^(n)C_(3))y+(.^(n)C_(4))z=0` has a non - trivial solution, then the value of n is equal to `(AA n in N, n ge 4)`

A

6

B

7

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( n \) such that the given system of equations has a non-trivial solution. This occurs when the determinant of the coefficients of the equations is equal to zero. ### Step 1: Write the system of equations in matrix form The given equations are: 1. \( \binom{n}{3} x + \binom{n}{4} y + 35z = 0 \) 2. \( \binom{n}{4} x + 35y + \binom{n}{3} z = 0 \) 3. \( 35x + \binom{n}{3} y + \binom{n}{4} z = 0 \) We can express this in matrix form as: \[ \begin{bmatrix} \binom{n}{3} & \binom{n}{4} & 35 \\ \binom{n}{4} & 35 & \binom{n}{3} \\ 35 & \binom{n}{3} & \binom{n}{4} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 2: Set up the determinant For the system to have a non-trivial solution, the determinant of the coefficient matrix must be zero: \[ D = \begin{vmatrix} \binom{n}{3} & \binom{n}{4} & 35 \\ \binom{n}{4} & 35 & \binom{n}{3} \\ 35 & \binom{n}{3} & \binom{n}{4} \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant We can calculate the determinant using cofactor expansion. For simplicity, we will expand along the first row: \[ D = \binom{n}{3} \begin{vmatrix} 35 & \binom{n}{3} \\ \binom{n}{3} & \binom{n}{4} \end{vmatrix} - \binom{n}{4} \begin{vmatrix} \binom{n}{4} & \binom{n}{3} \\ 35 & \binom{n}{4} \end{vmatrix} + 35 \begin{vmatrix} \binom{n}{4} & 35 \\ 35 & \binom{n}{3} \end{vmatrix} \] Calculating these 2x2 determinants: 1. \( \begin{vmatrix} 35 & \binom{n}{3} \\ \binom{n}{3} & \binom{n}{4} \end{vmatrix} = 35 \cdot \binom{n}{4} - \binom{n}{3}^2 \) 2. \( \begin{vmatrix} \binom{n}{4} & \binom{n}{3} \\ 35 & \binom{n}{4} \end{vmatrix} = \binom{n}{4}^2 - 35 \cdot \binom{n}{3} \) 3. \( \begin{vmatrix} \binom{n}{4} & 35 \\ 35 & \binom{n}{3} \end{vmatrix} = \binom{n}{4} \cdot \binom{n}{3} - 35^2 \) Substituting these back into the determinant expression gives: \[ D = \binom{n}{3} (35 \cdot \binom{n}{4} - \binom{n}{3}^2) - \binom{n}{4} (\binom{n}{4}^2 - 35 \cdot \binom{n}{3}) + 35 (\binom{n}{4} \cdot \binom{n}{3} - 35^2) \] ### Step 4: Set the determinant to zero Setting \( D = 0 \) leads to the equation: \[ \binom{n}{3}^2 + \binom{n}{4}^2 + 35^2 - 3 \cdot 35 \cdot \binom{n}{3} \cdot \binom{n}{4} = 0 \] ### Step 5: Solve for \( n \) This expression can be analyzed using the identity \( a^2 + b^2 + c^2 - 3abc = 0 \). This gives us two conditions: 1. \( \binom{n}{3} + \binom{n}{4} + 35 = 0 \) (not possible since they are positive) 2. \( \binom{n}{3} = \binom{n}{4} = 35 \) From \( \binom{n}{3} = \binom{n}{4} \), we have: - Either \( n = 3 + 4 = 7 \) or \( n = 3 \) or \( n = 4 \) (not valid since \( n \) must be greater than or equal to 4). Thus, the only valid solution is: \[ n = 7 \] ### Conclusion The value of \( n \) is \( 7 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If .^(35)C_(n+7)=.^(35)C_(4n-2) then find the value of n.

If C(35, n+7)= C(35, 4n-2) then all the values of n are

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)

Find the value of ^(4n)C_0+^(4n)C_4+^(4n)C_8+….+^(4n)C_(4n)