Home
Class 12
MATHS
Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)...

Let `A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)]` are two matrices such that AB = BA and `r ne 0`, then the value of `(3p-3s)/(5q-4r)` is equal to

A

`(3)/(2)`

B

4

C

`(9)/(2)`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((3p - 3s)/(5q - 4r)\) given that the matrices \(A\) and \(B\) commute, i.e., \(AB = BA\). Let's start by calculating the products \(AB\) and \(BA\). ### Step 1: Calculate \(AB\) Given: \[ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \] The product \(AB\) is calculated as follows: \[ AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} 1 \cdot p + 2 \cdot r & 1 \cdot q + 2 \cdot s \\ 3 \cdot p + 4 \cdot r & 3 \cdot q + 4 \cdot s \end{pmatrix} \] This simplifies to: \[ AB = \begin{pmatrix} p + 2r & q + 2s \\ 3p + 4r & 3q + 4s \end{pmatrix} \] ### Step 2: Calculate \(BA\) Now, calculate \(BA\): \[ BA = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} p \cdot 1 + q \cdot 3 & p \cdot 2 + q \cdot 4 \\ r \cdot 1 + s \cdot 3 & r \cdot 2 + s \cdot 4 \end{pmatrix} \] This simplifies to: \[ BA = \begin{pmatrix} p + 3q & 2p + 4q \\ r + 3s & 2r + 4s \end{pmatrix} \] ### Step 3: Set \(AB = BA\) Since \(AB = BA\), we can equate the corresponding elements: 1. From the first element: \[ p + 2r = p + 3q \implies 2r = 3q \implies r = \frac{3}{2}q \] 2. From the second element: \[ q + 2s = 2p + 4q \implies 2s - 2p = 3q \implies s - p = \frac{3}{2}q \implies p - s = -\frac{3}{2}q \] ### Step 4: Express \(3p - 3s\) Now, we can express \(3p - 3s\): \[ 3p - 3s = 3(p - s) = 3\left(-\frac{3}{2}q\right) = -\frac{9}{2}q \] ### Step 5: Express \(5q - 4r\) Next, we express \(5q - 4r\): Using \(r = \frac{3}{2}q\): \[ 5q - 4r = 5q - 4\left(\frac{3}{2}q\right) = 5q - 6q = -q \] ### Step 6: Compute \(\frac{3p - 3s}{5q - 4r}\) Now we can substitute these values into the expression: \[ \frac{3p - 3s}{5q - 4r} = \frac{-\frac{9}{2}q}{-q} = \frac{9}{2} \] ### Final Answer Thus, the value of \(\frac{3p - 3s}{5q - 4r}\) is: \[ \boxed{\frac{9}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p = 4,q = 3 and r = -2, find the values of : (3pq+2qr^(2))/(p+q-r)

If p = 3 , q = 2 and r = -1, find the values of (3p^(2)q+5r)/(2pq-3qr)

If p = 4,q = -3 and r = 2, find the value of : p^(3)+q^(3)-r^(3)-3pqr

Let P(2,-1,4) and Q(4,3,2) are two points and as point R on PQ is such that 3PQ=5QR , then the coordinates of R are

If p = 4, q= 3 and r = -2, find the values of : (p^(2)+q^(2)-r^(2))/(pq+qr-pr)

If A=[(1,2),(3,4),(5,6)] and B=[(-3,-2),(1,-5),(4,3)] , then find D=[(p,q),(r,s),(t,u)] such that A+B-D=O .

If P(2,\ 4),\ \ Q(0,\ 3),\ \ R(3,\ 6) and S(5,\ y) are the vertices of a parallelogram P Q R S , then the value of y is (a) 7 (b) 5 (c) -7 (d) -8

Let the matrices A=[{:( sqrt3,-2),(0,1):}] and P be any orthogonal matrix such that Q = PAP' and let Rne [r_0] _(2-2)=P'Q^(6) P then

Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I_3 then |p|=

If the points P(-3,\ 9),\ \ Q(a ,\ b) and R(4,\ -5) are collinear and a+b=1 , find the values of a and b .