Home
Class 12
MATHS
The least value of n (n in N), such that...

The least value of `n (n in N)`, such that the function `f(n, x)=int n cos (nx) dx` satisfies `f(n, (pi)/(2))=-1`, is (given, `f(n, 0)=0`)

A

3

B

4

C

5

D

6

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int nx^(n-1) cosx^n dx

period the function f(x)=(sin{sin(n x)})/(tan (x/n)) , n in N, is 6pi then n= --------

For any n in N , the value of the intergral int_(0)^(pi) (sin 2nx)/(sinx)dx is,

Let f(x)=(sin 2n x)/(1+cos^(2)nx), n in N has (pi)/(6) as its fundamental period , then n=

Show that the function f: N->N given by, f(n)=n-(-1)^n for all n in N is a bijection.

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

For each ositive integer n, define a function f _(n) on [0,1] as follows: f _(n((x)={{:(0, if , x =0),(sin ""(pi)/(2n), if , 0 lt x le 1/n),( sin ""(2pi)/(2n) , if , 1/n lt x le 2/n), (sin ""(3pi)/(2pi), if, 2/n lt x le 3/n), (sin "'(npi)/(2pi) , if, (n-1)/(n) lt x le 1):} Then the value of lim _(x to oo)int _(0)^(1) f_(n) (x) dx is:

A function f:R to R is differernitable and satisfies the equation f((1)/(n)) =0 for all integers n ge 1 , then

lf is a differentiable function satisfying f(1/n)=0,AA n>=1,n in I , then

Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for all "x inR. Then, f'(x)f(nx)