Home
Class 12
MATHS
Let A=[(-4, -3, -3),(1, a, 1),(4, b, 3)]...

Let `A=[(-4, -3, -3),(1, a, 1),(4, b, 3)] and A=A^(-1)`, then `a+2b` is equal to

A

0

B

4

C

8

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we have the matrix \( A = \begin{pmatrix} -4 & -3 & -3 \\ 1 & a & 1 \\ 4 & b & 3 \end{pmatrix} \) and we know that \( A = A^{-1} \), we will follow these steps: ### Step 1: Set up the equation Since \( A = A^{-1} \), we can multiply both sides by \( A \): \[ A \cdot A = I \] where \( I \) is the identity matrix. The identity matrix for a 3x3 matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Multiply the matrix \( A \) by itself We need to compute \( A \cdot A \): \[ A \cdot A = \begin{pmatrix} -4 & -3 & -3 \\ 1 & a & 1 \\ 4 & b & 3 \end{pmatrix} \cdot \begin{pmatrix} -4 & -3 & -3 \\ 1 & a & 1 \\ 4 & b & 3 \end{pmatrix} \] ### Step 3: Calculate the elements of the resulting matrix We will calculate each element of the resulting matrix: - First row, first column: \[ (-4)(-4) + (-3)(1) + (-3)(4) = 16 - 3 - 12 = 1 \] - First row, second column: \[ (-4)(-3) + (-3)(a) + (-3)(b) = 12 - 3a - 3b \] - First row, third column: \[ (-4)(-3) + (-3)(1) + (-3)(3) = 12 - 3 - 9 = 0 \] - Second row, first column: \[ (1)(-4) + (a)(1) + (1)(4) = -4 + a + 4 = a \] - Second row, second column: \[ (1)(-3) + (a)(a) + (1)(b) = -3 + a^2 + b \] - Second row, third column: \[ (1)(-3) + (a)(1) + (1)(3) = -3 + a + 3 = a \] - Third row, first column: \[ (4)(-4) + (b)(1) + (3)(4) = -16 + b + 12 = b - 4 \] - Third row, second column: \[ (4)(-3) + (b)(a) + (3)(b) = -12 + ab + 3b \] - Third row, third column: \[ (4)(-3) + (b)(1) + (3)(3) = -12 + b + 9 = b - 3 \] ### Step 4: Set the resulting matrix equal to the identity matrix Now we set the resulting matrix equal to the identity matrix: \[ \begin{pmatrix} 1 & 12 - 3a - 3b & 0 \\ a & -3 + a^2 + b & a \\ b - 4 & -12 + ab + 3b & b - 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Solve the equations From the matrix comparison, we can derive the following equations: 1. \( 12 - 3a - 3b = 0 \) 2. \( a = 0 \) 3. \( -3 + a^2 + b = 1 \) 4. \( b - 4 = 0 \) 5. \( -12 + ab + 3b = 0 \) 6. \( b - 3 = 0 \) From equation 2, we find \( a = 0 \). Substituting \( a = 0 \) into equation 1: \[ 12 - 3(0) - 3b = 0 \implies 12 - 3b = 0 \implies 3b = 12 \implies b = 4 \] ### Step 6: Calculate \( a + 2b \) Now we can find \( a + 2b \): \[ a + 2b = 0 + 2(4) = 8 \] ### Final Answer Thus, \( a + 2b = 8 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If B_(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B_(n)=adj(B_(n-1), AA n in N and I is an identity matrix of order 3, then B_(1)+B_(3)+B_(5)+B_(7)+B_(9) is equal to

Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A , then the value of x is equal to

Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0 , then B is equal to

The plane containing the line (x-3)/(2)=(y-b)/(4)=(z-3)/(3) passes through the points (a, 1, 2), (2, 1, 4), (2, 3, 5) , then 3a+5b is equal to

If A=[(2, -3, -5) , (-1, 4, 5), (1, -3, -4)] and B=[(2, -2, -4) , (-1, 3, 4),( 1, -2, -3) ] , show that A B=A and B A=B .

If A=[(2 ,-3, -5), (-1, 4, 5),( 1, -3 ,-4)] and B=[(-1, 3, 5), (1,-3, -5) , (-1, 3, 5)] , show that A B=B A=O_3xx3 .

If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is equal to

Let A=[(1,-2),( 3, 3),( 2,-1)] and B=[(2 ,3, -1),( 2, 4, -5)] . Find A B and B A and show that A B!=B Adot

If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)] are two matrices, then the value of the determinant (A+A^(2)B^(2)+A^(3)+A^(4)B^(4)+"………"20" terms")

Let x=|(x1),(x2),(x3)|,A=|(1,-1, 2),( 2, 0, 1),( 3, 2, 1)|a n d B=[(3),( 2),( 1)]dotIfA X=B , Then X is equal to