Home
Class 12
MATHS
The number of ordered pairs (a,x) satisf...

The number of ordered pairs (a,x) satisfying the equation `sec^(2)(a+2)x+a^(2)-1=0, pi lt x lt pi` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2-1=0;-pi < x< pi is

The number of ordered pair (x, y) satisfying the equation sin^(2) (x+y)+cos^(2) (x-y)=1 which lie on the circle x^(2)+y^(2)=pi^(2) is _________.

The number of ordered pairs which satisfy the equation x^2+2xsin(x y)+1=0 are (where y in [0,2pi] ) (a) 1 (b) 2 (c) 3 (d) 0

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x in[0,6 pi],y in[0,6 pi] then the number of ordered pair (x,y) which satisfy the equation sin^(-1)sin x+cos^(-1)cos y=(3 pi)/(2) are

The number of ordered pair(s) (x,y) which satisfy y=tan^(-1) tan x and 16(x^2+y^2)-48 pi x +16 pi y +31 pi^2=0 is

If x in (0,2pi)a n dy in (0,2pi) , then find the number of distinct ordered pairs (x , y) satisfying the equation 9cos^2x+sec^2y-6cosx-4secy+5=0

If 0 lt x lt pi/2 then

The total number of ordered pairs (x, y) satisfying |y|=cosx and y=sin^(-1)(sinx) , where x in [-2pi, 3pi] is equal to :

The number of ordered triplets (x,y,z) satisfy the equation (sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2