Home
Class 12
MATHS
The value of cos^(-1) sqrt((2)/(3)) - co...

The value of `cos^(-1) sqrt((2)/(3)) - cos^(-1).(sqrt6 + 1)/(2 sqrt3)` is equal to

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(2)`

D

`(pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

(sqrt(3)-1/(sqrt(3)))^2 is equal to

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]

find the value of sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2)

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3)))))) is

cos^-1[sqrt3/2]

1. sin^(-1)((1)/(sqrt(2))) 2. cos^(-1)((sqrt(3))/(2))

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to