Home
Class 12
MATHS
Let |z(1)|=3, |z(2)|=2 and z(1)+z(2)+z(3...

Let `|z_(1)|=3, |z_(2)|=2 and z_(1)+z_(2)+z_(3)=3+4i`. If the real part of `(z_(1)bar(z_(2))+z_(2)bar(z_(3))+z_(3)bar(z_(1)))` is equal to 4, then `|z_(3)|` is equal to (where, `i^(2)=-1`)

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the information given about the complex numbers \( z_1, z_2, \) and \( z_3 \). ### Step 1: Understand the given information We know: - \( |z_1| = 3 \) - \( |z_2| = 2 \) - \( z_1 + z_2 + z_3 = 3 + 4i \) ### Step 2: Calculate the modulus of \( z_1 + z_2 + z_3 \) To find the modulus of \( z_1 + z_2 + z_3 \): \[ |z_1 + z_2 + z_3| = |3 + 4i| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 3: Use the property of modulus We can use the property of modulus: \[ |z_1 + z_2 + z_3|^2 = |z_1|^2 + |z_2|^2 + |z_3|^2 + 2 \cdot \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) \] Substituting the known values: \[ 5^2 = |z_1|^2 + |z_2|^2 + |z_3|^2 + 2 \cdot \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) \] \[ 25 = 3^2 + 2^2 + |z_3|^2 + 2 \cdot \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) \] ### Step 4: Substitute the values of \( |z_1|^2 \) and \( |z_2|^2 \) Calculating \( |z_1|^2 \) and \( |z_2|^2 \): \[ |z_1|^2 = 9, \quad |z_2|^2 = 4 \] Substituting these values: \[ 25 = 9 + 4 + |z_3|^2 + 2 \cdot \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) \] \[ 25 = 13 + |z_3|^2 + 2 \cdot \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) \] ### Step 5: Rearranging the equation Rearranging gives: \[ |z_3|^2 + 2 \cdot \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) = 25 - 13 \] \[ |z_3|^2 + 2 \cdot \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) = 12 \] ### Step 6: Substitute the value of the real part We know that the real part \( \text{Re}(z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1}) = 4 \): \[ |z_3|^2 + 2 \cdot 4 = 12 \] \[ |z_3|^2 + 8 = 12 \] ### Step 7: Solve for \( |z_3|^2 \) Subtracting 8 from both sides: \[ |z_3|^2 = 12 - 8 = 4 \] ### Step 8: Find \( |z_3| \) Taking the square root: \[ |z_3| = \sqrt{4} = 2 \] Thus, the modulus of \( z_3 \) is \( |z_3| = 2 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)|=|z_(3)|=1 and z_(1)+z_(2)+z_(3)=sqrt(2)+i , then the complex number z_(2)barz_(3)+z_(3)barz_(1)+z_(1)barz_(2) , is

if z_(1)=2+3i, z_(2)=1-iand z_(3) = 3+ 4i ,then find z_(1)z_(2) +z_(3)

If z_(1) = 3+ 2i and z_(2) = 2-i then verify that (i) bar(z_(1) + z_(2)) = barz_(1) + barz_(2)

If z_(1)= 3 + 5i and z_(2)= 2- 3i , then verify that bar(((z_(1))/(z_(2))))= (bar(z)_(1))/(bar(z)_(2))

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |(z_(1))/(z_(2))|= (|z_(1)|)/(|z_(2)|)

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If |z_(1)|=2,|z_(2)|=3,|z_(3)|=4and|z_(1)+z_(2)+z_(3)|=5. "then"|4z_(2)z_(3)+9z_(3)z_(1)+16z_(1)z_(2)| is

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

If z_(1)=3 -2i ,z_(2) = 2-i and z_(3) = 2+ 5i then find z_(1) + z_(2) - 2z_(3)