Home
Class 12
MATHS
In a DeltaABC, the sides BC, CA and AB a...

In a `DeltaABC`, the sides BC, CA and AB are consecutive positive integers in increasing order. Let `veca, vecb and vecc` are position vectors of the vertices A, B and C respectively. If `(vecc-veca).(vecb-vecc)=0`, then the value of `|veca xx vecb+vecbxx vecc+vecc xxveca|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning outlined in the video transcript while providing a clear mathematical approach. ### Step-by-Step Solution: 1. **Understanding the Problem**: We have a triangle \( ABC \) with sides \( BC \), \( CA \), and \( AB \) being consecutive positive integers in increasing order. Let's denote the lengths of these sides as follows: - \( BC = k \) - \( CA = k + 1 \) - \( AB = k + 2 \) 2. **Position Vectors**: Let \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) be the position vectors of points \( A \), \( B \), and \( C \) respectively. 3. **Given Condition**: We have the condition: \[ (\vec{c} - \vec{a}) \cdot (\vec{b} - \vec{c}) = 0 \] This implies that the vectors \( \vec{c} - \vec{a} \) and \( \vec{b} - \vec{c} \) are perpendicular, indicating that triangle \( ABC \) is a right triangle. 4. **Applying Pythagorean Theorem**: Since \( ABC \) is a right triangle, we can apply the Pythagorean theorem: \[ AB^2 = BC^2 + CA^2 \] Substituting the lengths: \[ (k + 2)^2 = k^2 + (k + 1)^2 \] 5. **Expanding the Equation**: Expanding both sides: \[ k^2 + 4k + 4 = k^2 + (k^2 + 2k + 1) \] Simplifying the right side: \[ k^2 + 4k + 4 = 2k^2 + 2k + 1 \] 6. **Rearranging the Equation**: Rearranging gives: \[ 0 = 2k^2 + 2k + 1 - k^2 - 4k - 4 \] Simplifying this leads to: \[ 0 = k^2 - 2k - 3 \] 7. **Factoring the Quadratic**: Factoring the quadratic equation: \[ (k - 3)(k + 1) = 0 \] This gives us two potential solutions for \( k \): \[ k = 3 \quad \text{or} \quad k = -1 \] Since \( k \) must be positive, we take \( k = 3 \). 8. **Finding the Side Lengths**: Now substituting \( k = 3 \): - \( BC = 3 \) - \( CA = 4 \) - \( AB = 5 \) 9. **Calculating the Area**: The area \( A \) of triangle \( ABC \) can also be calculated using the formula for the area of a right triangle: \[ A = \frac{1}{2} \times BC \times CA = \frac{1}{2} \times 3 \times 4 = 6 \] 10. **Relating Area to Cross Products**: The area can also be expressed in terms of the cross products of the position vectors: \[ A = \frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| \] Therefore, we have: \[ |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| = 12 \] ### Final Answer: The value of \( |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| \) is \( \boxed{12} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|