Home
Class 12
MATHS
The value of lim(xrarr(5pi)/(4))(cot^(3)...

The value of `lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4)))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \frac{5\pi}{4}} \frac{\cot^3 x - \tan x}{\cos\left(x + \frac{5\pi}{4}\right)}, \] we will follow these steps: ### Step 1: Direct Substitution First, we will substitute \( x = \frac{5\pi}{4} \) directly into the limit. \[ \cot\left(\frac{5\pi}{4}\right) = \cot\left(\pi + \frac{\pi}{4}\right) = \cot\left(\frac{\pi}{4}\right) = 1, \] \[ \tan\left(\frac{5\pi}{4}\right) = \tan\left(\pi + \frac{\pi}{4}\right) = \tan\left(\frac{\pi}{4}\right) = 1. \] Thus, we have: \[ \cot^3\left(\frac{5\pi}{4}\right) - \tan\left(\frac{5\pi}{4}\right) = 1^3 - 1 = 0. \] Next, we evaluate the denominator: \[ \cos\left(\frac{5\pi}{4} + \frac{5\pi}{4}\right) = \cos\left(\frac{10\pi}{4}\right) = \cos\left(\frac{5\pi}{2}\right). \] Since \( \frac{5\pi}{2} = 2\pi + \frac{\pi}{2} \), we have: \[ \cos\left(\frac{5\pi}{2}\right) = 0. \] Thus, we have the form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can differentiate the numerator and the denominator. #### Differentiate the Numerator: The numerator is \( \cot^3 x - \tan x \). Using the chain rule and product rule: \[ \frac{d}{dx}(\cot^3 x) = 3 \cot^2 x (-\csc^2 x) = -3 \cot^2 x \csc^2 x, \] \[ \frac{d}{dx}(\tan x) = \sec^2 x. \] Thus, the derivative of the numerator is: \[ -3 \cot^2 x \csc^2 x - \sec^2 x. \] #### Differentiate the Denominator: The denominator is \( \cos\left(x + \frac{5\pi}{4}\right) \). Using the chain rule: \[ \frac{d}{dx}(\cos\left(x + \frac{5\pi}{4}\right)) = -\sin\left(x + \frac{5\pi}{4}\right). \] ### Step 3: Rewrite the Limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to \frac{5\pi}{4}} \frac{-3 \cot^2 x \csc^2 x - \sec^2 x}{-\sin\left(x + \frac{5\pi}{4}\right)}. \] ### Step 4: Substitute Again Now we substitute \( x = \frac{5\pi}{4} \) again: For the numerator: \[ \cot\left(\frac{5\pi}{4}\right) = 1 \Rightarrow \cot^2\left(\frac{5\pi}{4}\right) = 1, \] \[ \csc^2\left(\frac{5\pi}{4}\right) = -2 \quad (\text{since } \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}), \] \[ \sec^2\left(\frac{5\pi}{4}\right) = 2 \quad (\text{since } \cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}). \] Thus, the numerator becomes: \[ -3(1)(-2) - 2 = 6 - 2 = 4. \] For the denominator: \[ \sin\left(\frac{5\pi}{4} + \frac{5\pi}{4}\right) = \sin\left(\frac{10\pi}{4}\right) = \sin\left(\frac{5\pi}{2}\right) = 1. \] ### Final Calculation Now we can compute the limit: \[ \lim_{x \to \frac{5\pi}{4}} \frac{4}{1} = 4. \] Thus, the value of the limit is: \[ \boxed{4}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

sin^(-1)(cos((5pi)/4)) is equal to

The value of lim_(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to

lim_(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is