Home
Class 12
MATHS
If sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b...

If `sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))= 2cot^(-1)((1)/(x))`, then x is equal to `[AA a, b in (0, 1)]`

A

`(a-b)/(1+ab)`

B

`(b)/(1+ab)`

C

`(b)/(1-ab)`

D

`(a+b)/(1-ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2 \cot^{-1}\left(\frac{1}{x}\right), \] we will follow these steps: ### Step 1: Use the identity for sine inverse We know that \[ \sin^{-1}(x) = 2 \tan^{-1}(x) \text{ for } x = \frac{2t}{1+t^2}. \] Thus, we can rewrite the left side of the equation: \[ \sin^{-1}\left(\frac{2a}{1+a^2}\right) = 2 \tan^{-1}(a) \quad \text{and} \quad \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2 \tan^{-1}(b). \] ### Step 2: Substitute back into the equation Substituting these into the equation gives: \[ 2 \tan^{-1}(a) + 2 \tan^{-1}(b) = 2 \cot^{-1}\left(\frac{1}{x}\right). \] ### Step 3: Simplify the equation Dividing both sides by 2, we have: \[ \tan^{-1}(a) + \tan^{-1}(b) = \cot^{-1}\left(\frac{1}{x}\right). \] ### Step 4: Convert cotangent to tangent Using the identity \(\cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right)\), we rewrite the right side: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}(x). \] ### Step 5: Use the tangent addition formula Using the formula for the sum of arctangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right), \] we equate: \[ \tan^{-1}\left(\frac{a+b}{1-ab}\right) = \tan^{-1}(x). \] ### Step 6: Equate the arguments Since the tangent functions are equal, we can set the arguments equal to each other: \[ x = \frac{a+b}{1-ab}. \] ### Conclusion Thus, the value of \(x\) is: \[ \boxed{\frac{a+b}{1-ab}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a) (a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

If sin^(-1)((2a)/(1+a^2))-cos^(-1)((1-b^2)/(1+b^2))=tan^(-1)((2x)/(1-x^2)) , then prove that x=(a-b)/(1+a b)

If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

Solve : sin^(-1)((2a)/(1+a^2)) + cos^(-1)( (1-b^2)/(1+b^2)) = 2 tan^(-1) x,|a|le1, |b|ge 0 .

If x_1=2tan^(-1)((1+x)/(1-x)),x_2=sin^(-1)((1-x^2)/(1+x^2)) , where x in (0,1), then x_1+x_2 is equal to (a) 0 (b) 2pi (c) pi (d) none of these

sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to (A) 0,1/2 (B) 1,1/2 (C) 0 (D) 1/2