Home
Class 12
MATHS
If tantheta=3tanphi, then the maximum va...

If `tantheta=3tanphi`, then the maximum value of `tan^2(theta-phi)` is

A

1

B

`(1)/(3)`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \( \tan^2(\theta - \phi) \) given that \( \tan \theta = 3 \tan \phi \). ### Step-by-Step Solution: 1. **Given Relation**: We start with the relation: \[ \tan \theta = 3 \tan \phi \] 2. **Using the Tangent Subtraction Formula**: We can express \( \tan(\theta - \phi) \) using the formula: \[ \tan(\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi} \] Substituting \( \tan \theta = 3 \tan \phi \) into the formula gives: \[ \tan(\theta - \phi) = \frac{3 \tan \phi - \tan \phi}{1 + 3 \tan \phi \cdot \tan \phi} = \frac{2 \tan \phi}{1 + 3 \tan^2 \phi} \] 3. **Finding \( \tan^2(\theta - \phi) \)**: We need to find \( \tan^2(\theta - \phi) \): \[ \tan^2(\theta - \phi) = \left( \frac{2 \tan \phi}{1 + 3 \tan^2 \phi} \right)^2 = \frac{4 \tan^2 \phi}{(1 + 3 \tan^2 \phi)^2} \] 4. **Letting \( x = \tan^2 \phi \)**: Let \( x = \tan^2 \phi \). Then we can rewrite the expression as: \[ \tan^2(\theta - \phi) = \frac{4x}{(1 + 3x)^2} \] 5. **Finding the Maximum Value**: To find the maximum value of \( \frac{4x}{(1 + 3x)^2} \), we can differentiate it with respect to \( x \) and set the derivative to zero. Let: \[ f(x) = \frac{4x}{(1 + 3x)^2} \] Using the quotient rule: \[ f'(x) = \frac{(1 + 3x)^2 \cdot 4 - 4x \cdot 2(1 + 3x)(3)}{(1 + 3x)^4} \] Setting the numerator to zero for maximization: \[ 4(1 + 3x)^2 - 24x(1 + 3x) = 0 \] Simplifying gives: \[ 4(1 + 3x) - 24x = 0 \implies 4 - 12x = 0 \implies x = \frac{1}{3} \] 6. **Substituting Back to Find Maximum**: Substitute \( x = \frac{1}{3} \) back into the expression for \( \tan^2(\theta - \phi) \): \[ \tan^2(\theta - \phi) = \frac{4 \cdot \frac{1}{3}}{(1 + 3 \cdot \frac{1}{3})^2} = \frac{\frac{4}{3}}{(1 + 1)^2} = \frac{\frac{4}{3}}{4} = \frac{1}{3} \] ### Conclusion: Thus, the maximum value of \( \tan^2(\theta - \phi) \) is: \[ \frac{1}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tantheta=1/(2) and tanphi=1/(3) , then the value of (theta+phi) is

If tantheta=(1)/(2) and tanphi=(1)/(3) , then the value of theta+phi is

if (1+tantheta)(1+tanphi)=2 , find the general value of (theta+phi)

If 2sec 2theta=tan phi+cotphi , then one of the values of theta+phi is

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

Tangents are drawn from the point (alpha, 2) to the hyperbola 3x^2 - 2y^2 = 6 and are inclined at angles theta and phi to the x-axis . If tan theta. tan phi = 2, then the value of 2alpha^2 - 7 is

If (1+tantheta)(1+tanphi)=2 , then theta + phi =

If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is

If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is