Home
Class 12
MATHS
Let veca=x^(2)hati-3hatj+(x-3)hatk and v...

Let `veca=x^(2)hati-3hatj+(x-3)hatk` and `vecb=hati+3hatj-(x-3)hatk` be two vectors such that `|veca|=|vecb|`. If angle between `4veca+7vecb and 7veca-4vecb` is equal to `theta`. Then `cos 2 theta` is equal to

A

`-(1)/(2)`

B

`(sqrt3)/(2)`

C

`-1`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = x^2 \hat{i} - 3 \hat{j} + (x - 3) \hat{k} \] \[ \vec{b} = \hat{i} + 3 \hat{j} - (x - 3) \hat{k} \] ### Step 2: Calculate the magnitudes of the vectors The magnitudes of the vectors are given by: \[ |\vec{a}| = \sqrt{(x^2)^2 + (-3)^2 + (x - 3)^2} \] \[ |\vec{b}| = \sqrt{(1)^2 + (3)^2 + (-(x - 3))^2} \] Calculating these: \[ |\vec{a}| = \sqrt{x^4 + 9 + (x^2 - 6x + 9)} = \sqrt{x^4 + x^2 - 6x + 18} \] \[ |\vec{b}| = \sqrt{1 + 9 + (x - 3)^2} = \sqrt{10 + (x^2 - 6x + 9)} = \sqrt{x^2 - 6x + 19} \] ### Step 3: Set the magnitudes equal Since \( |\vec{a}| = |\vec{b}| \): \[ \sqrt{x^4 + x^2 - 6x + 18} = \sqrt{x^2 - 6x + 19} \] Squaring both sides: \[ x^4 + x^2 - 6x + 18 = x^2 - 6x + 19 \] Simplifying gives: \[ x^4 + x^2 - 6x + 18 - x^2 + 6x - 19 = 0 \] \[ x^4 - 1 = 0 \] Factoring: \[ (x^2 - 1)(x^2 + 1) = 0 \] Thus, \( x^2 - 1 = 0 \) gives \( x = 1 \) or \( x = -1 \). ### Step 4: Find the angle between \( 4\vec{a} + 7\vec{b} \) and \( 7\vec{a} - 4\vec{b} \) Let: \[ \vec{u} = 4\vec{a} + 7\vec{b} \] \[ \vec{v} = 7\vec{a} - 4\vec{b} \] ### Step 5: Calculate the dot product \( \vec{u} \cdot \vec{v} \) Using the distributive property: \[ \vec{u} \cdot \vec{v} = (4\vec{a} + 7\vec{b}) \cdot (7\vec{a} - 4\vec{b}) = 28\vec{a} \cdot \vec{a} - 16\vec{a} \cdot \vec{b} + 49\vec{b} \cdot \vec{b} - 28\vec{b} \cdot \vec{a} \] Since \( \vec{a} \cdot \vec{b} = 0 \): \[ \vec{u} \cdot \vec{v} = 28|\vec{a}|^2 + 49|\vec{b}|^2 \] ### Step 6: Calculate the magnitudes of \( \vec{u} \) and \( \vec{v} \) \[ |\vec{u}| = \sqrt{(4|\vec{a}|)^2 + (7|\vec{b}|)^2} = \sqrt{16|\vec{a}|^2 + 49|\vec{b}|^2} \] \[ |\vec{v}| = \sqrt{(7|\vec{a}|)^2 + (4|\vec{b}|)^2} = \sqrt{49|\vec{a}|^2 + 16|\vec{b}|^2} \] ### Step 7: Find \( \cos \theta \) Using the formula: \[ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \] Substituting the values: \[ \cos \theta = \frac{28|\vec{a}|^2 + 49|\vec{b}|^2}{\sqrt{16|\vec{a}|^2 + 49|\vec{b}|^2} \cdot \sqrt{49|\vec{a}|^2 + 16|\vec{b}|^2}} \] ### Step 8: Calculate \( \cos 2\theta \) Using the double angle formula: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] ### Final Answer After simplifying, we find that \( \cos 2\theta = -1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of veca on vecb

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of vecb on veca

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

Let veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc be vector such that |vecc -veca|=3, |(veca xx vecb) xx vecc|=3 and the angle between vecc and veca xx vecb " be " 30^(@) Then , veca . Vecc is equal to

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,