Home
Class 12
MATHS
If the integral I=int(0)^(19pi)(dx)/(1+e...

If the integral `I=int_(0)^(19pi)(dx)/(1+e^(cos^(3)x)` has the value, `(kpi)/(2),` then `(k)/(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{19\pi} \frac{dx}{1 + e^{\cos^3 x}} \) and find the value of \( \frac{k}{2} \) where \( I = \frac{k\pi}{2} \), we can follow these steps: ### Step 1: Write down the integral We start with the integral: \[ I = \int_{0}^{19\pi} \frac{dx}{1 + e^{\cos^3 x}} \] ### Step 2: Use the property of integrals We can use the property of integrals which states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In this case, let \( a = 19\pi \). Thus, we have: \[ I = \int_{0}^{19\pi} \frac{dx}{1 + e^{\cos^3(19\pi - x)}} \] ### Step 3: Simplify the expression Using the cosine identity \( \cos(19\pi - x) = -\cos(x) \), we can rewrite the integral: \[ I = \int_{0}^{19\pi} \frac{dx}{1 + e^{(-\cos x)^3}} = \int_{0}^{19\pi} \frac{dx}{1 + e^{-\cos^3 x}} \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{19\pi} \frac{dx}{1 + e^{\cos^3 x}} \) 2. \( I = \int_{0}^{19\pi} \frac{dx}{1 + e^{-\cos^3 x}} \) Adding these two equations gives: \[ 2I = \int_{0}^{19\pi} \left( \frac{1}{1 + e^{\cos^3 x}} + \frac{1}{1 + e^{-\cos^3 x}} \right) dx \] ### Step 5: Simplify the combined integral The expression inside the integral simplifies as follows: \[ \frac{1}{1 + e^{\cos^3 x}} + \frac{1}{1 + e^{-\cos^3 x}} = \frac{(1 + e^{-\cos^3 x}) + (1 + e^{\cos^3 x})}{(1 + e^{\cos^3 x})(1 + e^{-\cos^3 x})} \] This simplifies to: \[ \frac{2}{1 + e^{\cos^3 x} + e^{-\cos^3 x}} = \frac{2}{1 + 2\cosh(\cos^3 x)} \] ### Step 6: Evaluate the integral Thus, we have: \[ 2I = \int_{0}^{19\pi} \frac{2}{1 + 2\cosh(\cos^3 x)} \, dx \] This integral evaluates to: \[ 2I = \int_{0}^{19\pi} dx = 19\pi \] So we find: \[ I = \frac{19\pi}{2} \] ### Step 7: Find \( k \) From the problem statement, we have: \[ I = \frac{k\pi}{2} \] Comparing both sides, we find: \[ \frac{19\pi}{2} = \frac{k\pi}{2} \implies k = 19 \] ### Step 8: Calculate \( \frac{k}{2} \) Finally, we need to find: \[ \frac{k}{2} = \frac{19}{2} \] Thus, the final answer is: \[ \frac{k}{2} = \frac{19}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

int_(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dx has the value

int_(0)^(pi//2) (1)/(4+3 cos x)dx

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

The integral I=int_(e)^(e+1)(1+x^(2))/(1+x^(3))dx satisfies

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value of the integral int_(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1) , is

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :