Home
Class 12
MATHS
The value of definite integral I=int(ln...

The value of definite integral `I=int_(ln((sqrt3)/(2)))^(ln((2)/(sqrt3)))ln.((2-tan^(7)x)/(2+tan^(7)x))dx` is equal to

A

`ln4`

B

`ln2`

C

0

D

`ln((1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{\ln(\frac{\sqrt{3}}{2})}^{\ln(\frac{2}{\sqrt{3}})} \ln\left(\frac{2 - \tan^7 x}{2 + \tan^7 x}\right) dx, \] we can follow these steps: ### Step 1: Change of Variables We can use the property of logarithms and the symmetry of the integral. Notice that the limits of integration are symmetric about \( \ln(1) = 0 \). We can perform a substitution \( x = -u \), which gives \( dx = -du \). The limits change accordingly: - When \( x = \ln(\frac{\sqrt{3}}{2}) \), \( u = -\ln(\frac{\sqrt{3}}{2}) \). - When \( x = \ln(\frac{2}{\sqrt{3}}) \), \( u = -\ln(\frac{2}{\sqrt{3}}) \). Thus, the integral becomes: \[ I = \int_{-\ln(\frac{2}{\sqrt{3}})}^{-\ln(\frac{\sqrt{3}}{2})} \ln\left(\frac{2 - \tan^7(-u)}{2 + \tan^7(-u)}\right)(-du). \] ### Step 2: Simplifying the Function Using the property of the tangent function, we know that \( \tan(-u) = -\tan(u) \). Therefore, we have: \[ \tan^7(-u) = -\tan^7(u). \] Substituting this into the integral gives: \[ I = \int_{-\ln(\frac{2}{\sqrt{3}})}^{-\ln(\frac{\sqrt{3}}{2})} \ln\left(\frac{2 + \tan^7 u}{2 - \tan^7 u}\right) du. \] ### Step 3: Combining the Integrals Now we have two expressions for \( I \): 1. The original integral: \[ I = \int_{\ln(\frac{\sqrt{3}}{2})}^{\ln(\frac{2}{\sqrt{3}})} \ln\left(\frac{2 - \tan^7 x}{2 + \tan^7 x}\right) dx. \] 2. The transformed integral: \[ I = \int_{-\ln(\frac{2}{\sqrt{3}})}^{-\ln(\frac{\sqrt{3}}{2})} \ln\left(\frac{2 + \tan^7 u}{2 - \tan^7 u}\right) du. \] ### Step 4: Adding the Two Integrals Adding both expressions for \( I \): \[ 2I = \int_{\ln(\frac{\sqrt{3}}{2})}^{\ln(\frac{2}{\sqrt{3}})} \left[ \ln\left(\frac{2 - \tan^7 x}{2 + \tan^7 x}\right) + \ln\left(\frac{2 + \tan^7 x}{2 - \tan^7 x}\right) \right] dx. \] Using the property of logarithms \( \ln(a) + \ln(b) = \ln(ab) \): \[ 2I = \int_{\ln(\frac{\sqrt{3}}{2})}^{\ln(\frac{2}{\sqrt{3}})} \ln(1) dx = 0. \] ### Step 5: Conclusion Thus, we find that: \[ I = 0. \] ### Final Answer The value of the definite integral is \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the integral int_(0)^(2) (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of integral int_(1)^(e) (log x)^(3)dx , is

int_(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

If the value of the integral I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx is equal to ln k, then the value of k^(2) is equal to

The value of the definite integral int e^(-x^4) (2+ln(x+sqrt(x^2+1))+5x^3-8x^4)dx is equal to