Home
Class 12
MATHS
If a, b, c are sides of the triangle ABC...

If a, b, c are sides of the triangle ABC and `|(1,a, b),(1,c,a),(1,b,c)|=0`, then the value of `cos 2A+cos 2B+cos 2C` is equal to

A

`-(3)/(2)`

B

`(3)/(2)`

C

`(3sqrt3)/(2)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition and find the value of \( \cos 2A + \cos 2B + \cos 2C \). ### Step 1: Analyze the determinant condition We are given that: \[ \left| \begin{array}{ccc} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{array} \right| = 0 \] This determinant being zero implies that the rows of the matrix are linearly dependent. ### Step 2: Perform row operations We can perform row operations to simplify the determinant. Let's subtract the first row from the second and third rows: \[ \left| \begin{array}{ccc} 1 & a & b \\ 0 & c-a & a-b \\ 0 & b-a & c-b \end{array} \right| \] ### Step 3: Expand the determinant Now we can expand the determinant: \[ = 1 \cdot \left| \begin{array}{cc} c-a & a-b \\ b-a & c-b \end{array} \right| \] Calculating this 2x2 determinant gives us: \[ = (c-a)(c-b) - (a-b)(b-a) = (c-a)(c-b) - (a-b)^2 \] ### Step 4: Set the determinant to zero Setting the determinant equal to zero gives us: \[ (c-a)(c-b) - (a-b)^2 = 0 \] ### Step 5: Rearranging the equation This can be rearranged to: \[ (c-a)(c-b) = (a-b)^2 \] ### Step 6: Analyze the implications For this equation to hold true, since all terms are positive (as they represent sides of a triangle), we can conclude that: \[ a = b = c \] This means triangle ABC is equilateral. ### Step 7: Find angles A, B, and C In an equilateral triangle, all angles are equal: \[ A = B = C = \frac{\pi}{3} \] ### Step 8: Calculate \( \cos 2A + \cos 2B + \cos 2C \) Now, we need to find: \[ \cos 2A + \cos 2B + \cos 2C \] Since \( A = B = C = \frac{\pi}{3} \): \[ \cos 2A = \cos 2B = \cos 2C = \cos \left(2 \cdot \frac{\pi}{3}\right) = \cos \left(\frac{2\pi}{3}\right) = -\frac{1}{2} \] Thus, \[ \cos 2A + \cos 2B + \cos 2C = 3 \cdot \left(-\frac{1}{2}\right) = -\frac{3}{2} \] ### Final Answer The value of \( \cos 2A + \cos 2B + \cos 2C \) is: \[ \boxed{-\frac{3}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, cos A+cos B+cos C=

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0 , then sin^(2) A + sin^(2) B + sin^(2) C is

In triangle ABC, /_C = (2pi)/3 then the value of cos^2 A + cos^2 B - cos A.cos B is equal

In triangle ABC, a = 2, b = 3,c = 4 , then the value of cos A is

In Delta ABC a =5 ,b=3 ,c=7 .Then value of 3 cos C +7 cos B is equal :-

With usual notations, if in a triangle ABC (b+c)/(11) = (c+a)/(12) = (a+b)/(13) , then cos A : cos B : cos C is :

In a Delta ABC , cos (A + B) + cos C =

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-1,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

The vertices of a triangle ABC are A(0, 0), B(2, -1) and C(9, 2) , find cos B .