Home
Class 12
MATHS
Let f(x)={((1+cosx)/((pi-x)^(2)).(sin^(2...

Let `f(x)={((1+cosx)/((pi-x)^(2)).(sin^(2)x)/(ln(1+pi^(2)-2pix+x^(2))),x ne pi),(lambda, x=pi):}`

A

1

B

`-1`

C

`(1)/(2)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the function \( f(x) \) is continuous at \( x = \pi \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches \( \pi \) and set it equal to \( \lambda \). ### Step-by-Step Solution: 1. **Understanding the Function:** The function is defined as: \[ f(x) = \frac{(1 + \cos x) \cdot \sin^2 x}{(\pi - x)^2 \cdot \ln(1 + \pi^2 - 2\pi x + x^2)}, \quad x \neq \pi \] and \( f(\pi) = \lambda \). 2. **Finding the Limit:** We need to find: \[ \lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{(1 + \cos x) \cdot \sin^2 x}{(\pi - x)^2 \cdot \ln(1 + \pi^2 - 2\pi x + x^2)} \] As \( x \to \pi \), both the numerator and denominator approach 0, indicating that we can apply L'Hôpital's Rule or simplify the expression. 3. **Substituting \( x = \pi - t \):** Let \( t = \pi - x \), then as \( x \to \pi \), \( t \to 0 \). Thus: \[ \cos x = \cos(\pi - t) = -\cos t \] and \[ \sin x = \sin(\pi - t) = \sin t. \] The limit becomes: \[ \lim_{t \to 0} \frac{(1 - \cos t) \cdot \sin^2 t}{t^2 \cdot \ln(1 + t^2)}. \] 4. **Using Standard Limits:** We know: - \( 1 - \cos t \sim \frac{t^2}{2} \) as \( t \to 0 \). - \( \sin t \sim t \) as \( t \to 0 \). - \( \ln(1 + t^2) \sim t^2 \) as \( t \to 0 \). 5. **Substituting the Limits:** Substitute these approximations into the limit: \[ \lim_{t \to 0} \frac{\frac{t^2}{2} \cdot t^2}{t^2 \cdot t^2} = \lim_{t \to 0} \frac{\frac{t^4}{2}}{t^4} = \frac{1}{2}. \] 6. **Setting the Limit Equal to \( \lambda \):** Since \( f(x) \) is continuous at \( x = \pi \), we have: \[ \lambda = \lim_{x \to \pi} f(x) = \frac{1}{2}. \] ### Conclusion: Thus, the value of \( \lambda \) is: \[ \lambda = \frac{1}{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

f(x)=1+[cosx]x,"in "0ltxle(pi)/(2)

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

If f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)/(2)):}, where {k} represents the fractional park of k, then:

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is