Home
Class 12
MATHS
Consider the following two statements P ...

Consider the following two statements P and Q.
`P: cos^(-1)(cos.(4pi)/(3))=(4pi)/(3)`
`Q:sec^(2)(cot^(-1).(1)/(2))+"cosec"^(2)(tan^(-1).(1)/(3))=15`
Then, which of the following true?

A

Both P and Q are true

B

P is true, but Q is false

C

P is false, but Q is true

D

Both P and Q are false

Text Solution

AI Generated Solution

The correct Answer is:
To determine the truth of the statements P and Q, we will analyze each statement step by step. ### Step 1: Analyze Statement P **Statement P:** \( \cos^{-1}(\cos(4\pi/3)) = 4\pi/3 \) 1. **Understanding the range of \( \cos^{-1} \)**: The function \( \cos^{-1}(x) \) returns values in the range \( [0, \pi] \). 2. **Calculate \( \cos(4\pi/3) \)**: \[ \cos(4\pi/3) = \cos(\pi + \pi/3) = -\cos(\pi/3) = -\frac{1}{2} \] 3. **Evaluate \( \cos^{-1}(-\frac{1}{2}) \)**: The angle whose cosine is \(-\frac{1}{2}\) in the range \( [0, \pi] \) is: \[ \cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3} \] 4. **Compare with \( 4\pi/3 \)**: Since \( \frac{2\pi}{3} \neq \frac{4\pi}{3} \), we conclude: \[ P \text{ is false.} \] ### Step 2: Analyze Statement Q **Statement Q:** \( \sec^2(\cot^{-1}(1/2)) + \csc^2(\tan^{-1}(1/3)) = 15 \) 1. **Evaluate \( \sec^2(\cot^{-1}(1/2)) \)**: Let \( \theta = \cot^{-1}(1/2) \). Then, \( \cot(\theta) = 1/2 \). Using the identity \( \sec^2(\theta) = 1 + \cot^2(\theta) \): \[ \sec^2(\theta) = 1 + \left(\frac{1}{2}\right)^2 = 1 + \frac{1}{4} = \frac{5}{4} \] 2. **Evaluate \( \csc^2(\tan^{-1}(1/3)) \)**: Let \( \phi = \tan^{-1}(1/3) \). Then, \( \tan(\phi) = 1/3 \). Using the identity \( \csc^2(\phi) = 1 + \tan^2(\phi) \): \[ \csc^2(\phi) = 1 + \left(\frac{1}{3}\right)^2 = 1 + \frac{1}{9} = \frac{10}{9} \] 3. **Combine the results**: Now, we add the two results: \[ \sec^2(\cot^{-1}(1/2)) + \csc^2(\tan^{-1}(1/3)) = \frac{5}{4} + \frac{10}{9} \] To add these fractions, we need a common denominator, which is \( 36 \): \[ \frac{5}{4} = \frac{5 \times 9}{4 \times 9} = \frac{45}{36} \] \[ \frac{10}{9} = \frac{10 \times 4}{9 \times 4} = \frac{40}{36} \] \[ \frac{45}{36} + \frac{40}{36} = \frac{85}{36} \] 4. **Compare with 15**: Since \( \frac{85}{36} \neq 15 \), we conclude: \[ Q \text{ is false.} \] ### Conclusion Both statements P and Q are false.
Promotional Banner

Similar Questions

Explore conceptually related problems

sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?

prove that sec^(2)(tan^(-1)2)+cosec^2(cot^(-1)3)=15

Prove that sec^(2) (tan ^(-1) 3) + cosec^(2)(cot^(-1)2) = 15

Evaluate the following: sin^(-1)(sinpi/4) (ii) cos^(-1)(cos2pi/3) tan^(-1)(tanpi/3)

"sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)"

Find the principal values of the following : (i) sin^(-1)(sin.(5pi)/(3)) (ii) cos^(-1)cos((4pi)/(3)) (iii) cos [(pi)/(3) + cos^(-1) (-(1)/(2))]

Prove that cos(2pi)/(15)cos(4pi)/(15)cos(8pi)/(15)cos(14pi)/(15)=1/(16)

tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) is :

Evaluate each of the following: sin^(-1)(sinpi/3) (ii) cos^(-1)(cos(2pi)/3) (iii) tan^(-1)(tanpi/4)

sin^(2) (pi/6)+cos^(2) (pi/3)-tan^(2) (pi/4)=-1/2