Home
Class 12
MATHS
The integral I=int((1)/(x.secx)-ln(x^(si...

The integral `I=int((1)/(x.secx)-ln(x^(sinx))dx` simplifies to (where, c is the constant of integration)

A

`(ln x)(sinx)+c`

B

`(lnx)(cosx)+c`

C

`xln(sinx)+c`

D

`xln(cosx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( \frac{1}{x \sec x} - \ln(x^{\sin x}) \right) dx \), we will follow these steps: ### Step 1: Simplify the logarithmic term We start by simplifying the logarithmic term: \[ \ln(x^{\sin x}) = \sin x \cdot \ln x \] Thus, we can rewrite the integral as: \[ I = \int \left( \frac{1}{x \sec x} - \sin x \ln x \right) dx \] ### Step 2: Separate the integral Now, we can separate the integral into two parts: \[ I = \int \frac{1}{x \sec x} \, dx - \int \sin x \ln x \, dx \] ### Step 3: Simplify the first integral The first integral can be simplified: \[ \frac{1}{x \sec x} = \frac{\cos x}{x} \] Thus, we have: \[ I = \int \frac{\cos x}{x} \, dx - \int \sin x \ln x \, dx \] ### Step 4: Solve the second integral using integration by parts For the second integral \( \int \sin x \ln x \, dx \), we will use integration by parts. Let: - \( u = \ln x \) (hence \( du = \frac{1}{x} dx \)) - \( dv = \sin x \, dx \) (hence \( v = -\cos x \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \sin x \ln x \, dx = -\ln x \cos x - \int -\cos x \cdot \frac{1}{x} \, dx \] This simplifies to: \[ \int \sin x \ln x \, dx = -\ln x \cos x + \int \frac{\cos x}{x} \, dx \] ### Step 5: Substitute back into the integral Now substituting back into our expression for \( I \): \[ I = \int \frac{\cos x}{x} \, dx - \left( -\ln x \cos x + \int \frac{\cos x}{x} \, dx \right) \] This simplifies to: \[ I = \int \frac{\cos x}{x} \, dx + \ln x \cos x - \int \frac{\cos x}{x} \, dx \] The \( \int \frac{\cos x}{x} \, dx \) terms cancel out: \[ I = \ln x \cos x + C \] ### Final Answer Thus, the integral simplifies to: \[ I = \ln x \cos x + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies to (where, c is the constant of integration)

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c is the constant of integration) and f(ln((pi)/(4)))^(2)=sqrt2. Then, the number of solutions of f(x)=2e (AA x in R-{0}) is equal to

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is

Consider the integrals I_(1)=inte^(x^(2))cosxdx and I_(2)=intxe^(x^(2))sinxdx . Then I_(1)+2I_(2) simplifies to (Where, c is the constant of integration)

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)