Home
Class 12
MATHS
If lim(xrarr0)(sin2x-a sin x)/(((x)/(3))...

If `lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L` exists finitely, then the absolute value of L is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

lim_(xrarr0) (sin4x-sin2x+x)/(x)=?

lim_(xrarr0) (sin 3 x)/(2x)

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) (x cos x-sinx)/(x^(2)sin x)

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

lim_(xrarr0) (sin 2x+x)/(x+tan 3x)=?

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?