Home
Class 12
MATHS
I=int(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-...

`I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} \frac{e^{f(x)}}{e^{f(x)} + e^{f(2-x)}} \, dx \), we can use a property of definite integrals. Here are the detailed steps: ### Step 1: Rewrite the Integral We start with the given integral: \[ I = \int_{0}^{2} \frac{e^{f(x)}}{e^{f(x)} + e^{f(2-x)}} \, dx \] ### Step 2: Change of Variable We can use the substitution \( u = 2 - x \). Then, \( du = -dx \). When \( x = 0 \), \( u = 2 \), and when \( x = 2 \), \( u = 0 \). Therefore, we can rewrite the integral as: \[ I = \int_{2}^{0} \frac{e^{f(2-u)}}{e^{f(2-u)} + e^{f(u)}} (-du) = \int_{0}^{2} \frac{e^{f(2-u)}}{e^{f(2-u)} + e^{f(u)}} \, du \] ### Step 3: Simplify the New Integral Now we can denote this new integral as \( J \): \[ J = \int_{0}^{2} \frac{e^{f(2-x)}}{e^{f(2-x)} + e^{f(x)}} \, dx \] ### Step 4: Add the Two Integrals Now we have two expressions for \( I \): \[ I = \int_{0}^{2} \frac{e^{f(x)}}{e^{f(x)} + e^{f(2-x)}} \, dx \] \[ J = \int_{0}^{2} \frac{e^{f(2-x)}}{e^{f(2-x)} + e^{f(x)}} \, dx \] Adding these two integrals, we get: \[ I + J = \int_{0}^{2} \left( \frac{e^{f(x)}}{e^{f(x)} + e^{f(2-x)}} + \frac{e^{f(2-x)}}{e^{f(2-x)} + e^{f(x)}} \right) dx \] ### Step 5: Simplify the Sum Notice that: \[ \frac{e^{f(x)}}{e^{f(x)} + e^{f(2-x)}} + \frac{e^{f(2-x)}}{e^{f(2-x)} + e^{f(x)}} = 1 \] Thus, we have: \[ I + J = \int_{0}^{2} 1 \, dx = 2 \] ### Step 6: Relate \( I \) and \( J \) Since \( I = J \), we can write: \[ 2I = 2 \implies I = 1 \] ### Conclusion Thus, the value of the integral is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c l=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx then l is equal to

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function for which int_0^2f(x)dx=5,t h e nint_0^(50)f(x)dx is equal to (a)125 (b) int_(-4)^(46)f(x)dx (c) int_1^(51)f(x)dx (d) int_2^(52)f(x)dx

If f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1