Home
Class 12
MATHS
If x, y and z are the roots of the equat...

If x, y and z are the roots of the equation `2t^(3)-(tan[x+y+z]pi)t^(2)-11t+2020=0`, then `|(x,y,z),(y,z,x),(z,x,y)|` is equal to (where, `[x]` denotes the greatest integral value less than or equal to x)

A

20

B

`-10`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to analyze the given cubic equation and the determinant involving the roots \( x, y, z \). ### Step 1: Understand the given cubic equation The equation is: \[ 2t^3 - \tan[x+y+z]\pi t^2 - 11t + 2020 = 0 \] From the properties of cubic equations, we know that the sum of the roots \( x + y + z \) can be expressed in terms of the coefficients. ### Step 2: Identify the sum of the roots The sum of the roots \( x + y + z \) for the cubic equation \( at^3 + bt^2 + ct + d = 0 \) is given by: \[ x + y + z = -\frac{b}{a} \] Here, \( a = 2 \) and \( b = -\tan[x+y+z]\pi \). Thus: \[ x + y + z = \frac{\tan[x+y+z]\pi}{2} \] ### Step 3: Set up the equation for the greatest integer function Since \( [x+y+z] \) denotes the greatest integral value less than or equal to \( x+y+z \), we can denote \( n = [x+y+z] \). Therefore: \[ x + y + z = 10n\frac{\pi}{2} \] ### Step 4: Determine the value of \( n \) To satisfy \( \tan[n\pi] = 0 \), we need \( n \) to be an integer. The simplest case is when \( n = 0 \), which leads to: \[ x + y + z = 0 \] ### Step 5: Analyze the determinant The determinant we need to evaluate is: \[ D = \begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix} \] ### Step 6: Simplify the determinant We can simplify the determinant by adding all rows: \[ D = \begin{vmatrix} x + y + z & x + y + z & x + y + z \\ y & z & x \\ z & x & y \end{vmatrix} \] Substituting \( x + y + z = 0 \): \[ D = \begin{vmatrix} 0 & 0 & 0 \\ y & z & x \\ z & x & y \end{vmatrix} \] ### Step 7: Conclude the value of the determinant Since the first row consists entirely of zeros, the determinant \( D \) is equal to zero: \[ D = 0 \] ### Final Answer Thus, the value of the determinant \( |(x,y,z),(y,z,x),(z,x,y)| \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

|{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. If y=x=z, then z is equal to

Write the value of |(x+y,y+z,z+x),(z,x,y),(-3,-3,-3)|

Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies A^(T) = A^(-1)

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

If y z+z x+x y=12 , and x , y , z are positive values, find the greatest value of x y zdot