Home
Class 12
MATHS
Let f(x)="min"{sqrt(4-x^(2)),sqrt(1+x^(2...

Let `f(x)="min"{sqrt(4-x^(2)),sqrt(1+x^(2))}AA,x in [-2, 2]` then the number of points where `f(x)` is non - differentiable is

A

1

B

0

C

4

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of points where the function \( f(x) = \min\{\sqrt{4 - x^2}, \sqrt{1 + x^2}\} \) is non-differentiable for \( x \in [-2, 2] \), we will follow these steps: ### Step 1: Identify the functions The function \( f(x) \) is defined as the minimum of two functions: 1. \( g_1(x) = \sqrt{4 - x^2} \) 2. \( g_2(x) = \sqrt{1 + x^2} \) ### Step 2: Determine the domain of each function - The function \( g_1(x) = \sqrt{4 - x^2} \) is defined for \( x \in [-2, 2] \) since the expression under the square root must be non-negative. - The function \( g_2(x) = \sqrt{1 + x^2} \) is defined for all \( x \) since \( 1 + x^2 \) is always positive. ### Step 3: Find the points of intersection To find where \( f(x) \) may change from one function to the other, we set \( g_1(x) = g_2(x) \): \[ \sqrt{4 - x^2} = \sqrt{1 + x^2} \] Squaring both sides gives: \[ 4 - x^2 = 1 + x^2 \] Rearranging this equation: \[ 4 - 1 = 2x^2 \implies 3 = 2x^2 \implies x^2 = \frac{3}{2} \implies x = \pm \sqrt{\frac{3}{2}} \approx \pm 1.2247 \] ### Step 4: Evaluate the function at the endpoints and points of intersection We need to evaluate \( f(x) \) at the points \( x = -2, -\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, 2 \): - At \( x = -2 \): \[ f(-2) = \min\{\sqrt{4 - (-2)^2}, \sqrt{1 + (-2)^2}\} = \min\{0, \sqrt{5}\} = 0 \] - At \( x = 2 \): \[ f(2) = \min\{\sqrt{4 - 2^2}, \sqrt{1 + 2^2}\} = \min\{0, \sqrt{5}\} = 0 \] - At \( x = -\sqrt{\frac{3}{2}} \): \[ f(-\sqrt{\frac{3}{2}}) = \sqrt{4 - \frac{3}{2}} = \sqrt{\frac{5}{2}} \quad \text{and} \quad f(-\sqrt{\frac{3}{2}}) = \sqrt{1 + \frac{3}{2}} = \sqrt{\frac{5}{2}} \] - At \( x = \sqrt{\frac{3}{2}} \): \[ f(\sqrt{\frac{3}{2}}) = \sqrt{4 - \frac{3}{2}} = \sqrt{\frac{5}{2}} \quad \text{and} \quad f(\sqrt{\frac{3}{2}}) = \sqrt{1 + \frac{3}{2}} = \sqrt{\frac{5}{2}} \] ### Step 5: Check differentiability at the points of intersection To check for non-differentiability, we need to analyze the left-hand and right-hand limits at the points \( x = -\sqrt{\frac{3}{2}} \) and \( x = \sqrt{\frac{3}{2}} \): - At \( x = -\sqrt{\frac{3}{2}} \): - The left-hand limit will approach \( g_1(x) \) and the right-hand limit will approach \( g_2(x) \). - At \( x = \sqrt{\frac{3}{2}} \): - The left-hand limit will approach \( g_2(x) \) and the right-hand limit will approach \( g_1(x) \). ### Conclusion The function \( f(x) \) is non-differentiable at: 1. \( x = -\sqrt{\frac{3}{2}} \) 2. \( x = \sqrt{\frac{3}{2}} \) 3. \( x = -2 \) 4. \( x = 2 \) Thus, there are **4 points** where \( f(x) \) is non-differentiable.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=" min "{(sqrt(9-x^(2)), sqrt(1+x^(2)))}, AA, x in [-3, 3] then the number of point(s) where f(x) is non - differentiable is/are

The number of points where f(x)=|x^(2)-3|x|-4| is non - differentiable is

Consider the function f(x)=min{|x^(2)-4|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Consider the function f(x)=min{|x^(2)-9|,|x^(2)-1|} , then the number of points where f(x) is non - differentiable is/are

Let f(x) = ||x|-1|, then points where, f(x) is not differentiable is/are

If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then the number of points, where f(x) is non -differentiable, is

Let f(x) = max. {|x^2 - 2| x ||,| x |} then number of points where f(x) is non derivable, is :

f(x) = maximum {4, 1 + x^2, x^2-1) AA x in R . Total number of points, where f(x) is non-differentiable,is equal to

In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where g (x) =f (|x|) is non-differentiable.

If f(x)={min{x ,x^2}; xgeq0,min"("2x ,x^2-1"}"; x<0 , then number of points in the interval [-2,2] where f(x) is non-differentiable is: 1 (b) 2 (c) 3 (d) 4