Home
Class 12
MATHS
Consider a matrix A=[(0,1,2),(0,-3,0),(1...

Consider a matrix `A=[(0,1,2),(0,-3,0),(1,1,1)].` If `6A^(-1)=aA^(2)+bA+cI`, where `a, b, c in and I` is an identity matrix, then `a+2b+3c` is equal to

A

`10`

B

`-10`

C

`8`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \), \( b \), and \( c \) in the equation \( 6A^{-1} = aA^2 + bA + cI \) where \( A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & -3 & 0 \\ 1 & 1 & 1 \end{pmatrix} \) and \( I \) is the identity matrix. ### Step 1: Find the characteristic polynomial of matrix \( A \) We start by calculating the characteristic polynomial using the determinant of \( A - \lambda I \): \[ A - \lambda I = \begin{pmatrix} 0 - \lambda & 1 & 2 \\ 0 & -3 - \lambda & 0 \\ 1 & 1 & 1 - \lambda \end{pmatrix} = \begin{pmatrix} -\lambda & 1 & 2 \\ 0 & -3 - \lambda & 0 \\ 1 & 1 & 1 - \lambda \end{pmatrix} \] Now, we calculate the determinant: \[ \text{det}(A - \lambda I) = -\lambda \cdot \text{det}\begin{pmatrix} -3 - \lambda & 0 \\ 1 & 1 - \lambda \end{pmatrix} - 1 \cdot \text{det}\begin{pmatrix} 0 & 2 \\ 1 & 1 - \lambda \end{pmatrix} \] Calculating the determinants of the 2x2 matrices: 1. For \( \begin{pmatrix} -3 - \lambda & 0 \\ 1 & 1 - \lambda \end{pmatrix} \): \[ \text{det} = (-3 - \lambda)(1 - \lambda) - (0) = (-3 - \lambda)(1 - \lambda) \] 2. For \( \begin{pmatrix} 0 & 2 \\ 1 & 1 - \lambda \end{pmatrix} \): \[ \text{det} = 0 \cdot (1 - \lambda) - 2 \cdot 1 = -2 \] Putting it all together: \[ \text{det}(A - \lambda I) = -\lambda((-3 - \lambda)(1 - \lambda)) + 2 \] Expanding this gives us: \[ = -\lambda(3 - 3\lambda - \lambda + \lambda^2) + 2 = -\lambda(-\lambda^2 - 2\lambda + 3) + 2 \] This simplifies to: \[ \lambda^3 + 2\lambda^2 - 5\lambda - 6 = 0 \] ### Step 2: Use the Cayley-Hamilton theorem According to the Cayley-Hamilton theorem, the matrix \( A \) satisfies its own characteristic polynomial: \[ A^3 + 2A^2 - 5A - 6I = 0 \] Multiplying the entire equation by \( A^{-1} \): \[ A^2 + 2A - 5I - 6A^{-1} = 0 \implies 6A^{-1} = A^2 + 2A - 5I \] ### Step 3: Compare coefficients From the equation \( 6A^{-1} = A^2 + 2A - 5I \), we can identify: - \( a = 1 \) - \( b = 2 \) - \( c = -5 \) ### Step 4: Calculate \( a + 2b + 3c \) Now we compute: \[ a + 2b + 3c = 1 + 2(2) + 3(-5) = 1 + 4 - 15 = -10 \] Thus, the final answer is: \[ \boxed{-10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

If matrix A=[(0,1,-1),(4,-3,4),(3,-3,4)]=B+C , where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C.

Consider the matrix A=[(3,1),(-6,-2)] , then (I+A)^(40) is equal to

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=[(1, 2),( 0, 3)] is written as B+C , where B is a symmetric matrix and C is a skew-symmetric matrix, then find Bdot

If B_(0)=[(-4, -3, -3),(1,0,1),(4,4,3)], B_(n)=adj(B_(n-1), AA n in N and I is an identity matrix of order 3, then B_(1)+B_(3)+B_(5)+B_(7)+B_(9) is equal to

Find the rank of matrix.A= [[3,1,2,0],[1,0,-1,0],[2,1,3,0]]

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

The matrix A=[{:(1,0,0),(0,2,0),(0,0,3):}] is: a) scalar matrix b) symmetric matrix c) skew symmetric matrix d) none f these