Home
Class 12
MATHS
If the value of the sum 29(.^(30)C(0))+2...

If the value of the sum `29(.^(30)C_(0))+28(.^(30)C_(1))+27(.^(30)C_(2))+…….+1(.^(30)C_(28))-(.^(30)C_(30))` is equal to `K.2^(32)`, then the value of K is equal to

A

7

B

14

C

`(5)/(2)`

D

`(7)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = 29 \cdot \binom{30}{0} + 28 \cdot \binom{30}{1} + 27 \cdot \binom{30}{2} + \ldots + 1 \cdot \binom{30}{28} - \binom{30}{30} \] ### Step 1: Rewrite the Sum We can rewrite the sum \( S \) by including the term \( 0 \cdot \binom{30}{29} \): \[ S = 29 \cdot \binom{30}{0} + 28 \cdot \binom{30}{1} + 27 \cdot \binom{30}{2} + \ldots + 1 \cdot \binom{30}{28} + 0 \cdot \binom{30}{29} - \binom{30}{30} \] ### Step 2: Express the Sum in Summation Notation We can express this sum using summation notation: \[ S = \sum_{k=0}^{30} (29 - k) \cdot \binom{30}{k} \] ### Step 3: Split the Summation We can split the summation into two parts: \[ S = \sum_{k=0}^{30} 29 \cdot \binom{30}{k} - \sum_{k=0}^{30} k \cdot \binom{30}{k} \] ### Step 4: Evaluate the First Summation The first summation can be evaluated using the binomial theorem: \[ \sum_{k=0}^{30} \binom{30}{k} = 2^{30} \] Thus, \[ \sum_{k=0}^{30} 29 \cdot \binom{30}{k} = 29 \cdot 2^{30} \] ### Step 5: Evaluate the Second Summation The second summation can be evaluated using the identity \( k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1} \): \[ \sum_{k=0}^{30} k \cdot \binom{30}{k} = 30 \cdot \sum_{k=1}^{30} \binom{29}{k-1} = 30 \cdot 2^{29} \] ### Step 6: Combine the Results Now we can combine the results: \[ S = 29 \cdot 2^{30} - 30 \cdot 2^{29} \] Factoring out \( 2^{29} \): \[ S = 2^{29} (29 \cdot 2 - 30) = 2^{29} (58 - 30) = 2^{29} \cdot 28 \] ### Step 7: Relate to Given Expression We know from the problem statement that: \[ S = K \cdot 2^{32} \] Setting the two expressions for \( S \) equal gives: \[ 28 \cdot 2^{29} = K \cdot 2^{32} \] ### Step 8: Solve for K Dividing both sides by \( 2^{29} \): \[ 28 = K \cdot 2^{3} \] Thus, \[ K = \frac{28}{8} = 3.5 = \frac{7}{2} \] ### Final Answer The value of \( K \) is: \[ \boxed{\frac{7}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

The value of underset(r=0)overset(40)sumr.^(40)C_(r).^(30)C_(r) is

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is (a) 40.^(69)C_(29) (b) 40.^(70)C_(30) (c) .^(60)C_(29) (d) .^(70)C_(30)

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

Find the value of ""^(6) C _3 and ""^(30)C_(28)

Find the value of 2sin30^(@)cos30^(@) .

Let q be a positive with q le 50 . If the sum ""^(98)C_(30)+2" "^(97)C_(30)+3." "^(96)C_(30)+ …… + 68." "^(31)C_(30)+69." "^(30)C_(30)=""^(100)C_(q) Find the sum of the digits of q.

Find the value of (1-2sin^(2)30^(@)) .

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

In Figure, the value of x is (a) 12 (b) 15 (c) 20 (d) 30