Home
Class 12
MATHS
The value of the integral I=int((1)/(sqr...

The value of the integral `I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5))` is equal to

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(12)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dx}{1 + x^2 + x^3 + x^5} \] we will use a substitution and properties of definite integrals. Let's go through the solution step by step. ### Step 1: Substitution Let \( t = \frac{1}{x} \). Then, we have: \[ x = \frac{1}{t} \quad \text{and} \quad dx = -\frac{1}{t^2} dt \] ### Step 2: Change the limits of integration When \( x = \frac{1}{\sqrt{3}} \), \( t = \sqrt{3} \) and when \( x = \sqrt{3} \), \( t = \frac{1}{\sqrt{3}} \). Thus, the limits change from \( \frac{1}{\sqrt{3}} \) to \( \sqrt{3} \) to \( \sqrt{3} \) to \( \frac{1}{\sqrt{3}} \). ### Step 3: Rewrite the integral Substituting into the integral, we have: \[ I = \int_{\sqrt{3}}^{\frac{1}{\sqrt{3}}} \frac{-\frac{1}{t^2}}{1 + \left(\frac{1}{t}\right)^2 + \left(\frac{1}{t}\right)^3 + \left(\frac{1}{t}\right)^5} dt \] This simplifies to: \[ I = \int_{\sqrt{3}}^{\frac{1}{\sqrt{3}}} \frac{-\frac{1}{t^2}}{\frac{1 + t^2 + t^3 + t^5}{t^5}} dt = \int_{\sqrt{3}}^{\frac{1}{\sqrt{3}}} \frac{-t^3}{1 + t^2 + t^3 + t^5} dt \] ### Step 4: Change the limits back Now, we can change the limits back: \[ I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{t^3}{1 + t^2 + t^3 + t^5} dt \] ### Step 5: Combine the integrals Now we have two expressions for \( I \): 1. \( I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dx}{1 + x^2 + x^3 + x^5} \) 2. \( I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{x^3}{1 + x^2 + x^3 + x^5} dx \) Adding these two equations gives: \[ 2I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1 + x^3}{1 + x^2 + x^3 + x^5} dx \] ### Step 6: Simplify the integral The denominator can be factored: \[ 1 + x^2 + x^3 + x^5 = (1 + x^3) + (x^2 + x^5) \] So we can write: \[ 2I = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1 + x^3}{1 + x^2 + x^3 + x^5} dx = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{1 + x^2 + x^3 + x^5} dx + \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{x^3}{1 + x^2 + x^3 + x^5} dx \] ### Step 7: Evaluate the integral The integral \( \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{1 + x^2} dx \) can be computed: \[ \int \frac{1}{1 + x^2} dx = \tan^{-1}(x) \] Thus: \[ I = \frac{1}{2} \left[ \tan^{-1}(\sqrt{3}) - \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \right] \] Using the values \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \) and \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \): \[ 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} \] Thus: \[ I = \frac{\pi}{12} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi}{12}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

The value of the integral inte^(3sin^(-1)x)((1)/(sqrt(1-x^(2)))+e^(3cos^(-1)x))dx is equal to (where, c is an arbitrary constant)

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The value of the integral int_0^(1/2)(1+sqrt(3))/(((x+1)^2(1-x)^6)^(1/4))dx is ______.

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dx is equal to (a)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^3)))+c (b)e^x(1/(sqrt(1+x^2))-x/(sqrt((1+x^2)^3)))+c (c)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^5)))+c (d)none of these

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

int_(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the definite integral int_(0)^(2) (sqrt(1+x ^(3))+""^(3) sqrt(x ^(2)+ 2x)) dx is :