Home
Class 12
MATHS
If f(x)=(x^(2)-[x^(2)])/(x^(2)-[x^(2)-2]...

If `f(x)=(x^(2)-[x^(2)])/(x^(2)-[x^(2)-2])` (where, `[.]` represents the greatest integer part of x), then the range of f(x) is

A

`[0, 1)`

B

`(-1, 1)`

C

`(0, oo)`

D

`[0, (1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x^2 - [x^2]}{x^2 - [x^2 - 2]} \), where \([.]\) denotes the greatest integer function (or floor function), we will analyze the behavior of the function step by step. ### Step 1: Understand the components of the function The function \( f(x) \) consists of two parts: the numerator \( x^2 - [x^2] \) and the denominator \( x^2 - [x^2 - 2] \). - The term \( [x^2] \) represents the greatest integer less than or equal to \( x^2 \). - The term \( [x^2 - 2] \) represents the greatest integer less than or equal to \( x^2 - 2 \). ### Step 2: Analyze the numerator The numerator \( x^2 - [x^2] \) gives the fractional part of \( x^2 \), denoted as \( \{x^2\} \). This value will always be in the range \( [0, 1) \). ### Step 3: Analyze the denominator For the denominator \( x^2 - [x^2 - 2] \): - If \( n = [x^2] \), then \( n \leq x^2 < n + 1 \). - Therefore, \( [x^2 - 2] = n - 2 \) if \( n \geq 2 \) and \( [x^2 - 2] = -1 \) if \( n = 1 \) or \( n = 0 \). Thus, we can express the denominator as: - If \( n \geq 2 \): \( x^2 - (n - 2) = x^2 - n + 2 \) - If \( n = 1 \): \( x^2 - (-1) = x^2 + 1 \) - If \( n = 0 \): \( x^2 - (-1) = x^2 + 1 \) ### Step 4: Determine the range of \( f(x) \) Now we will analyze \( f(x) \) in different intervals based on the integer values of \( n \): 1. **For \( n = 0 \) (i.e., \( 0 \leq x^2 < 1 \)):** - \( f(x) = \frac{x^2}{x^2 + 1} \) - As \( x^2 \) approaches \( 1 \), \( f(x) \) approaches \( \frac{1}{2} \). 2. **For \( n = 1 \) (i.e., \( 1 \leq x^2 < 2 \)):** - \( f(x) = \frac{x^2 - 1}{x^2 + 1} \) - As \( x^2 \) approaches \( 2 \), \( f(x) \) approaches \( \frac{1}{3} \). 3. **For \( n = 2 \) (i.e., \( 2 \leq x^2 < 3 \)):** - \( f(x) = \frac{x^2 - 2}{x^2 - 1} \) - As \( x^2 \) approaches \( 3 \), \( f(x) \) approaches \( \frac{1}{2} \). 4. **For \( n \geq 3 \):** - The function will continue to behave similarly, but we need to check the limits as \( x^2 \) increases. ### Step 5: Conclusion From the analysis, we can see that the function \( f(x) \) will vary between \( 0 \) and \( 1 \) depending on the intervals defined by the integer parts of \( x^2 \). Thus, the range of \( f(x) \) is \( [0, 1) \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x^(2)-[x^(2)])/(1+x^(2)-[x^(2)]) (where [.] represents the greatest integer part of x), then the range of f(x) is

If f(x)=(x^(3)+x+1)tan(pi[x]) (where, [x] represents the greatest integer part of x), then

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Draw the graph of f(x)=(2^(x))/(2^([x])) where [.] represents greatest integer function and find the domain and range.

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is