Home
Class 12
MATHS
Find the value of integral A=int(-a)^(a...

Find the value of integral `A=int_(-a)^(a)(e^(x))/(1+ e^x)dx`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_-a^a (x e^(x^2))/(1+x^2)dx is (A) e^(a^2) (B) 0 (C) e^(-a^2) (D) a

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of integral int_(1)^(e) (log x)^(3)dx , is

If x^(f(x))=e^(x-f(x)) , then the value of integral int_(1)^(2)f'(x){(1+logx)^(2)}dx+1 is

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

The value of the integral int_(1//e)^(e) |logx|dx , is