Home
Class 12
MATHS
If |(2+x,x,x^(2)),(x,2+x,x^(2)),(x^(2),x...

If `|(2+x,x,x^(2)),(x,2+x,x^(2)),(x^(2),x,2+x)|=(1)/(6)(x-a)(x-b)(x-c)(x-d)` an identity in x where a, b, c, d are independent of x, then the value of `(13)/(25)abcd` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant and equate it to the given expression. Here is the step-by-step solution: ### Step 1: Write the Determinant We need to evaluate the determinant of the matrix: \[ D = \begin{vmatrix} 2+x & x & x^2 \\ x & 2+x & x^2 \\ x^2 & x & 2+x \end{vmatrix} \] ### Step 2: Expand the Determinant Using the determinant formula for a 3x3 matrix, we can expand it as follows: \[ D = (2+x) \begin{vmatrix} 2+x & x^2 \\ x & 2+x \end{vmatrix} - x \begin{vmatrix} x & x^2 \\ x^2 & 2+x \end{vmatrix} + x^2 \begin{vmatrix} x & 2+x \\ x^2 & x \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} 2+x & x^2 \\ x & 2+x \end{vmatrix} = (2+x)(2+x) - x^2 \cdot x = (2+x)^2 - x^3 \] 2. For the second determinant: \[ \begin{vmatrix} x & x^2 \\ x^2 & 2+x \end{vmatrix} = x(2+x) - x^2 \cdot x^2 = 2x + x^2 - x^4 \] 3. For the third determinant: \[ \begin{vmatrix} x & 2+x \\ x^2 & x \end{vmatrix} = x \cdot x - (2+x)x^2 = x^2 - (2x^2 + x^3) = -2x^2 - x^3 + x^2 = -x^2 - x^3 \] ### Step 4: Substitute Back into the Determinant Now substitute these back into the determinant: \[ D = (2+x)((2+x)^2 - x^3) - x(2x + x^2 - x^4) + x^2(-x^2 - x^3) \] ### Step 5: Simplify the Expression After expanding and simplifying the expression, we can equate it to the right-hand side of the equation: \[ D = \frac{1}{6}(x-a)(x-b)(x-c)(x-d) \] ### Step 6: Evaluate at \(x = 0\) To find the constants \(a, b, c, d\), we can evaluate the determinant at \(x = 0\): \[ D(0) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 2^3 = 8 \] This gives: \[ 8 = \frac{1}{6}(-a)(-b)(-c)(-d) = \frac{1}{6}abcd \] Thus, \[ abcd = 48 \] ### Step 7: Calculate \(\frac{13}{25} abcd\) Now we can find the value of \(\frac{13}{25} abcd\): \[ \frac{13}{25} \cdot 48 = \frac{624}{25} = 24.96 \] ### Final Answer The value of \(\frac{13}{25} abcd\) is: \[ \boxed{24.96} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let |[x^2+3x,x-1,x+3],[x+1,-2x,x-4],[x-3,x+4, 3x]|=a x^4+b x^3+c x^2+e be an identity in x , where a , b , c , d , e are independent of xdot Then the value of e is (a) 4 (b) 0 (c) 1 (d) none of these

Let |x^2+3xx-1x+3x+1-2xx-4x-3x+4 3x|=a x^4+b x^3+c x^2+e be an identity in x , where a , b , c , d , e are independent of xdot Then the value of e is 4 (b) 0 (c) 1 (d) none of these

Let A=[(3x^2),(1),(6x)],B=[(a,b,c)],and C=[((x+2)^2,5x^2,2x),(5x^2,2x,(x+2)^2),(2x,(x+2)^2,5x^2)] be three given matrices, where a ,b ,c ,"and" x in R dot Given that f(x)=a x^2+b x+c , then the value of f(I) is ______.

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order.

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+3) , then A+B+C+D=

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=A/(x-1)+B/(x-2)+C/(x-3) , then C =

If range of f (x)= ((ln x) (ln x ^(2))+ln x ^(3)+3)/(ln ^(2) x+ln x ^(2)+2) can be expressed as [ (a)/(b),(c )/(d)] where a,b,c and d are prime numbers (not nacessarily distinct) then find the value of ((a+b+c+d))/(2).

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =