Home
Class 12
MATHS
If f(x) = {(px + q, :x le 2),(x^2 - 5x +...

If `f(x) = {(px + q, :x le 2),(x^2 - 5x + 6, : 2 < x < 3),(ax^2 + bx + 1, : x ge 3):}`
is differentiable everywhere, then `|p| + |q| + |1/a| + |1/b|` is equal to

A

`(71)/(10)`

B

`(51)/(10)`

C

`(33)/(5)`

D

`(31)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable at the points \( x = 2 \) and \( x = 3 \). The function is defined piecewise as follows: \[ f(x) = \begin{cases} px + q & \text{if } x \leq 2 \\ x^2 - 5x + 6 & \text{if } 2 < x < 3 \\ ax^2 + bx + 1 & \text{if } x \geq 3 \end{cases} \] ### Step 1: Continuity at \( x = 2 \) To ensure continuity at \( x = 2 \), we need: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2) \] Calculating \( f(2) \): \[ f(2) = p(2) + q = 2p + q \] Calculating \( \lim_{x \to 2^+} f(x) \): \[ \lim_{x \to 2^+} f(x) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0 \] Setting the limits equal for continuity: \[ 2p + q = 0 \quad \text{(1)} \] ### Step 2: Continuity at \( x = 3 \) For continuity at \( x = 3 \): \[ \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3) \] Calculating \( f(3) \): \[ f(3) = a(3^2) + b(3) + 1 = 9a + 3b + 1 \] Calculating \( \lim_{x \to 3^-} f(x) \): \[ \lim_{x \to 3^-} f(x) = 3^2 - 5(3) + 6 = 9 - 15 + 6 = 0 \] Setting the limits equal for continuity: \[ 9a + 3b + 1 = 0 \quad \text{(2)} \] ### Step 3: Differentiability at \( x = 2 \) For differentiability at \( x = 2 \): \[ f'(2^-) = f'(2^+) \] Calculating \( f'(2^-) \): \[ f'(x) = p \quad \text{(for } x \leq 2\text{)} \] Calculating \( f'(2^+) \): \[ f'(x) = 2x - 5 \quad \text{(for } 2 < x < 3\text{)} \] \[ f'(2^+) = 2(2) - 5 = 4 - 5 = -1 \] Setting the derivatives equal for differentiability: \[ p = -1 \quad \text{(3)} \] ### Step 4: Substitute \( p \) into Equation (1) Substituting \( p = -1 \) into equation (1): \[ 2(-1) + q = 0 \implies -2 + q = 0 \implies q = 2 \] ### Step 5: Differentiability at \( x = 3 \) For differentiability at \( x = 3 \): \[ f'(3^-) = f'(3^+) \] Calculating \( f'(3^-) \): \[ f'(3^-) = 2(3) - 5 = 6 - 5 = 1 \] Calculating \( f'(3^+) \): \[ f'(x) = 2ax + b \quad \text{(for } x \geq 3\text{)} \] \[ f'(3^+) = 6a + b \] Setting the derivatives equal for differentiability: \[ 1 = 6a + b \quad \text{(4)} \] ### Step 6: Substitute \( b \) from Equation (4) into Equation (2) From equation (2): \[ 9a + 3b + 1 = 0 \implies 3b = -9a - 1 \implies b = -3a - \frac{1}{3} \] Substituting into equation (4): \[ 1 = 6a + (-3a - \frac{1}{3}) \implies 1 = 3a - \frac{1}{3} \] \[ 3a = 1 + \frac{1}{3} = \frac{4}{3} \implies a = \frac{4}{9} \] ### Step 7: Find \( b \) Substituting \( a \) back into the equation for \( b \): \[ b = -3\left(\frac{4}{9}\right) - \frac{1}{3} = -\frac{12}{9} - \frac{3}{9} = -\frac{15}{9} = -\frac{5}{3} \] ### Step 8: Calculate \( |p| + |q| + |1/a| + |1/b| \) Now we have: - \( p = -1 \) so \( |p| = 1 \) - \( q = 2 \) so \( |q| = 2 \) - \( a = \frac{4}{9} \) so \( |1/a| = \frac{9}{4} \) - \( b = -\frac{5}{3} \) so \( |1/b| = \frac{3}{5} \) Calculating the total: \[ |p| + |q| + |1/a| + |1/b| = 1 + 2 + \frac{9}{4} + \frac{3}{5} \] Finding a common denominator (which is 20): \[ = 1 + 2 + \frac{45}{20} + \frac{12}{20} = 3 + \frac{57}{20} = \frac{60}{20} + \frac{57}{20} = \frac{117}{20} \] ### Final Answer Thus, the final answer is: \[ \frac{117}{20} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(2x^(2)+3,,,xge3),(ax^(2)+bx+1,,,xle3):} is differentiable everywhere, then (a)/(b^(2)) is equal to

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2 . Examine the differentiability

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +qx +2,,, x gt 3):} is continous AA x in R except x =1 but |f (x)| is differentiable everywhere and f '(x) is continous at x=3 and |a+p+q|=k, then k=

If f(x)={x^2+3x+a ,xlt=1, b x+2, forx >1 is everywhere differentiable, find the values of aa n dbdot

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Show that the function f(x)={:{(1+x ", " x le2","),(5-x", "x gt2):} is not differentiable at x=2

If x^(2) - 3x + 2 is factor of x^(4) - px^(2) + q then 2q - p is equal to