Home
Class 12
MATHS
If I(1)=int(0)^(2pi)sin^(3)xdx and I(2)=...

If `I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx`, then

A

`I_(1)+I_(2) gt 0`

B

`I+I_(2) lt0`

C

`I_(1)lt I_(2)`

D

`I_(1)=I_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and then compare their values. ### Step 1: Evaluate \( I_1 = \int_0^{2\pi} \sin^3 x \, dx \) We can use the property of integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(b + a - x) \, dx \] For \( I_1 \), we can apply this property: \[ I_1 = \int_0^{2\pi} \sin^3 x \, dx = \int_0^{2\pi} \sin^3(2\pi - x) \, dx \] Since \( \sin(2\pi - x) = -\sin x \), we have: \[ I_1 = \int_0^{2\pi} (-\sin x)^3 \, dx = -\int_0^{2\pi} \sin^3 x \, dx \] This gives us: \[ I_1 = -I_1 \] Adding \( I_1 \) to both sides: \[ 2I_1 = 0 \implies I_1 = 0 \] ### Step 2: Evaluate \( I_2 = \int_0^1 \ln\left(\frac{1}{x} - 1\right) \, dx \) We can rewrite the logarithmic term: \[ I_2 = \int_0^1 \ln\left(\frac{1 - x}{x}\right) \, dx \] Using the properties of logarithms: \[ I_2 = \int_0^1 \left(\ln(1 - x) - \ln x\right) \, dx \] This can be split into two integrals: \[ I_2 = \int_0^1 \ln(1 - x) \, dx - \int_0^1 \ln x \, dx \] ### Step 3: Evaluate \( \int_0^1 \ln(1 - x) \, dx \) Using integration by parts, let \( u = \ln(1 - x) \) and \( dv = dx \): \[ du = -\frac{1}{1 - x} \, dx, \quad v = x \] Thus, \[ \int \ln(1 - x) \, dx = x \ln(1 - x) - \int \frac{x}{1 - x} \, dx \] The second integral can be simplified further, but we can also use the known result: \[ \int_0^1 \ln(1 - x) \, dx = -1 \] ### Step 4: Evaluate \( \int_0^1 \ln x \, dx \) This integral is also a known result: \[ \int_0^1 \ln x \, dx = -1 \] ### Step 5: Combine results for \( I_2 \) Now substituting back into \( I_2 \): \[ I_2 = (-1) - (-1) = 0 \] ### Conclusion Both integrals \( I_1 \) and \( I_2 \) evaluate to 0: \[ I_1 = 0, \quad I_2 = 0 \] Thus, we conclude that: \[ I_1 = I_2 \] ### Final Answer The answer is \( I_1 = I_2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)x sin^(-1)xdx

If I = int_(0)^(2pi)sin^(2)xdx , then

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

I=int_(0)^(1)tan^(-1)xdx

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-(1//2)x^(2))dx . The greatest of these integrals, is

For f(x) =x^(4) +|x|, let I_(1)= int _(0)^(pi)f(cos x) dx and I_(2)= int_(0)^(pi//2) f(sin x ) dx "then" (I_(1))/(I_(2)) has the value equal to