Home
Class 12
MATHS
Let A(alpha)=[(cos alpha, 0,sin alpha),(...

Let `A(alpha)=[(cos alpha, 0,sin alpha),(0,1,0),(sin alpha, 0, cos alpha)] and [(x,y,z)]=[(0,1,0)]`. If the system of equations has infinite solutions and sum of all the possible value of `alpha` in `[0, 2pi]` is `kpi`, then the value of k is equal to

A

`0`

B

`2`

C

`4`

D

`8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the matrix \( A(\alpha) \) and the condition for the system of equations to have infinitely many solutions. ### Step 1: Set up the matrix and the condition for infinite solutions Given the matrix: \[ A(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix} \] For the system of equations to have infinitely many solutions, the determinant of \( A(\alpha) \) must be zero: \[ \text{det}(A(\alpha)) = 0 \] ### Step 2: Calculate the determinant We can calculate the determinant of the matrix \( A(\alpha) \): \[ \text{det}(A(\alpha)) = \cos \alpha \cdot \begin{vmatrix} 1 & 0 \\ 0 & \cos \alpha \end{vmatrix} - 0 + \sin \alpha \cdot \begin{vmatrix} 0 & 1 \\ \sin \alpha & 0 \end{vmatrix} \] Calculating the 2x2 determinants: \[ = \cos \alpha (1 \cdot \cos \alpha - 0) + \sin \alpha (0 - \sin \alpha) \] \[ = \cos^2 \alpha - \sin^2 \alpha \] Using the identity \( \cos^2 \alpha - \sin^2 \alpha = \cos(2\alpha) \): \[ \text{det}(A(\alpha)) = \cos(2\alpha) \] ### Step 3: Set the determinant to zero To find the values of \( \alpha \) for which the determinant is zero: \[ \cos(2\alpha) = 0 \] The solutions to this equation occur at: \[ 2\alpha = \frac{\pi}{2} + n\pi \quad \text{for } n \in \mathbb{Z} \] Thus, \[ \alpha = \frac{\pi}{4} + \frac{n\pi}{2} \] ### Step 4: Find all possible values of \( \alpha \) in the interval \([0, 2\pi]\) We can find the values of \( \alpha \) by substituting integer values for \( n \): - For \( n = 0 \): \[ \alpha = \frac{\pi}{4} \] - For \( n = 1 \): \[ \alpha = \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4} \] - For \( n = 2 \): \[ \alpha = \frac{\pi}{4} + \pi = \frac{5\pi}{4} \] - For \( n = 3 \): \[ \alpha = \frac{\pi}{4} + \frac{3\pi}{2} = \frac{7\pi}{4} \] - For \( n = 4 \): \[ \alpha = \frac{\pi}{4} + 2\pi = \frac{9\pi}{4} \quad (\text{not in } [0, 2\pi]) \] Thus, the valid values of \( \alpha \) in the interval \([0, 2\pi]\) are: \[ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \] ### Step 5: Sum all possible values of \( \alpha \) Now we sum these values: \[ \text{Sum} = \frac{\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{4} + \frac{7\pi}{4} = \frac{16\pi}{4} = 4\pi \] ### Step 6: Relate the sum to \( k\pi \) We are given that this sum equals \( k\pi \): \[ 4\pi = k\pi \implies k = 4 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

Let f(x)=|(4x+1,-cosx,-sinx),(6,8sinalpha,0),(12sinalpha, 16sin^(2)alpha,1+4sinalpha)| and f(0)=0 . If the sum of all possible values of alpha is kpi for alpha in [0, 2pi] , then the value of k is equal to

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (alpha/2) , is/are

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If sin alpha=A sin(alpha+beta),Ane0 , then The value of tan beta is

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to