Home
Class 12
MATHS
Two lines L(1) and L(2) of slops 1 are t...

Two lines `L_(1)` and `L_(2)` of slops 1 are tangents to `y^(2)=4x` and `x^(2)+2y^(2)=4` respectively, such that the distance d units between `L_(1) and L _(2)` is minimum, then the value of d is equal to

A

`sqrt3-(1)/(sqrt2)`

B

`sqrt3+(1)/(sqrt2)`

C

`sqrt2-1`

D

`sqrt3+sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

In the figure shown, there are two convex lenses L_(1) and L_(2) having focal. Lengths f_(1) and f_(2) respectively. The distance between L_(1) and L_(2) will be

Let l_(1) and l_(2) be the two lines which are normal to y^(2)=4x and tangent to x^(2)=-12y respectively (where, l_(1) and l_(2) are not the x - axis). Then, the product of the slopes of l_(1)and l_(2) is

The combined equation of the lines L_(1) and L_(2) is 2x^(2)+6xy+y^(2)=0 and that lines L_(3) and L_(4) is 4x^(2)+18xy+y^(2)=0 . If the angle between L_(1) and L_(4) be alpha , then the angle between L_(2) and L_(3) will be

The line L_(1)-=3x-4y+1=0 touches the circles C_(1) and C_(2) . Centers of C_(1) and C_(2) are A_(1)(1, 2) and A_(2)(3, 1) respectively Then, the length (in units) of the transverse common tangent of C_(1) and C_(2) is equal to

If the lines L_1 and L_2 are tangents to 4x^2-4x-24 y+49=0 and are normals for x^2+y^2=72 , then find the slopes of L_1 and L_2dot

The lines L_(1) : y - x = 0 and L_(2) : 2x + y = 0 intersect the line L_(3) : y + 2 = 0 at P and Q respectively . The bisectors of the acute angle between L_(1) and L_(2) intersect L_(3) at R . Statement 1 : The ratio PR : RQ equals 2sqrt2 : sqrt5 Statement - 2 : In any triangle , bisector of an angle divides the triangle into two similar triangles .

Consider the lines L_(1) -=3x-4y+2=0 " and " L_(2)-=3y-4x-5=0. Now, choose the correct statement(s). (a)The line x+y=0 bisects the acute angle between L_(1) "and " L_(2) containing the origin. (b)The line x-y+1=0 bisects the obtuse angle between L_(1) " and " L_(2) not containing the origin. (c)The line x+y+3=0 bisects the obtuse angle between L_(1) " and " L_(2) containing the origin. (d)The line x-y+1=0 bisects the acute angle between L_(1) " and " L_(2) not containing the origin.

Let the lines l_(1) and l_(2) be normals to y^(2)=4x and tangents to x^(2)=-12y (where l_(1) and l_(2) are not x - axis). The absolute value of the difference of slopes of l_(1) and l_(2) is

The line L_(1):(x)/(5)+(y)/(b)=1 passes through the point (13, 32) and is parallel to L_(2):(x)/(c)+(y)/(3)=1. Then, the distance between L_(1) andL_(2) is

The shortest distance between the two lines L_1:x=k_1, y=k_2 and L_2: x=k_3, y=k_4 is equal to