Home
Class 12
MATHS
The expression sin27^@cos57^@sin87^@ sim...

The expression `sin27^@cos57^@sin87^@` simplifies to

A

`(sin 9^(@))/(4)`

B

`(cos9^(@))/(4)`

C

`(sin9^(@))/(2)`

D

`(cos9^(@))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( P = \sin 27^\circ \cdot \cos 57^\circ \cdot \sin 87^\circ \), we can follow these steps: ### Step 1: Rewrite the trigonometric functions We know that: - \( \cos 57^\circ = \sin(90^\circ - 57^\circ) = \sin 33^\circ \) - \( \sin 87^\circ = \sin(90^\circ - 3^\circ) = \cos 3^\circ \) Thus, we can rewrite \( P \): \[ P = \sin 27^\circ \cdot \sin 33^\circ \cdot \cos 3^\circ \] ### Step 2: Use the double angle identity To simplify \( \sin 27^\circ \cdot \sin 33^\circ \), we can use the identity: \[ 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \] Let \( A = 27^\circ \) and \( B = 33^\circ \): \[ 2 \sin 27^\circ \sin 33^\circ = \cos(27^\circ - 33^\circ) - \cos(27^\circ + 33^\circ) \] Calculating the angles: \[ 27^\circ - 33^\circ = -6^\circ \quad \text{and} \quad 27^\circ + 33^\circ = 60^\circ \] Thus: \[ 2 \sin 27^\circ \sin 33^\circ = \cos(-6^\circ) - \cos(60^\circ) \] Since \( \cos(-\theta) = \cos(\theta) \): \[ 2 \sin 27^\circ \sin 33^\circ = \cos 6^\circ - \frac{1}{2} \] Now, we can express \( P \): \[ P = \frac{1}{2}(\cos 6^\circ - \frac{1}{2}) \cdot \cos 3^\circ \] ### Step 3: Distribute and simplify \[ P = \frac{1}{2} \cos 6^\circ \cdot \cos 3^\circ - \frac{1}{4} \cos 3^\circ \] ### Step 4: Use the cosine product identity We can again use the identity: \[ 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \] Let \( A = 6^\circ \) and \( B = 3^\circ \): \[ 2 \cos 6^\circ \cos 3^\circ = \cos(6^\circ + 3^\circ) + \cos(6^\circ - 3^\circ) = \cos 9^\circ + \cos 3^\circ \] Thus: \[ \cos 6^\circ \cos 3^\circ = \frac{1}{2}(\cos 9^\circ + \cos 3^\circ) \] Substituting back into \( P \): \[ P = \frac{1}{2} \cdot \frac{1}{2}(\cos 9^\circ + \cos 3^\circ) - \frac{1}{4} \cos 3^\circ \] \[ P = \frac{1}{4} \cos 9^\circ + \frac{1}{4} \cos 3^\circ - \frac{1}{4} \cos 3^\circ \] The \( \cos 3^\circ \) terms cancel out: \[ P = \frac{1}{4} \cos 9^\circ \] ### Final Answer Thus, the expression \( \sin 27^\circ \cdot \cos 57^\circ \cdot \sin 87^\circ \) simplifies to: \[ \boxed{\frac{1}{4} \cos 9^\circ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (sin 22^(@)cos 8^(@)+cos 158^(@) cos 98^(@))/(sin 23^(@) cos 7^(@)+cos 157^(@) cos 97^(@)) when simplified reduces to

State True or False: The value of the expression (sin80^(@)-cos80^(@)) is negative.

The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 35^@) simplifies to

Find the ragne of the expression 27^(cos 2x) 81^(sin 2x)

The value of the expression (2(sin 1^@ + sin 2^@ + sin 3^@ + .......+sin 89^@))/(2(cos 1^@ + cos 2^@ + cos 3^@ + ........+cos 44^@)+1) is equal to

The expression (sin 22^0cos8^0+cos 158^0cos98^0)/(sin 23^0cos7^0+cos 157^0cos 97^0\ ) when simplified reduces to a. 1 b. -1 c. 2 d. none

Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@)

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

The expression (sin 8thetacos theta-sin6 thetacos 3 theta)/(cos 2 thetacos theta-sin 3 thetasin 4 theta) is equals:-

The value of the expression (sin40^(@))/(sin80^(@))+(sin80^(@))/(sin20^(@))-(sin20^(@))/(sin40^(@)) is