Home
Class 12
MATHS
If L=lim(xrarr0)((e^(-x^(2)/2)-cosx)/(x^...

If `L=lim_(xrarr0)((e^(-x^(2)/2)-cosx)/(x^(2)tan^(2)x))`, then the value of 3L is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to 0} \frac{e^{-x^2/2} - \cos x}{x^2 \tan^2 x} \), we will follow these steps: ### Step 1: Analyze the limit As \( x \to 0 \), both the numerator and denominator approach 0, leading to a \( \frac{0}{0} \) indeterminate form. Therefore, we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Differentiate the numerator and the denominator with respect to \( x \): - **Numerator**: \[ \frac{d}{dx}(e^{-x^2/2} - \cos x) = -x e^{-x^2/2} + \sin x \] - **Denominator**: \[ \frac{d}{dx}(x^2 \tan^2 x) = 2x \tan^2 x + x^2 \cdot 2 \tan x \sec^2 x \] Thus, we have: \[ L = \lim_{x \to 0} \frac{-x e^{-x^2/2} + \sin x}{2x \tan^2 x + x^2 \cdot 2 \tan x \sec^2 x} \] ### Step 3: Evaluate the limit again Substituting \( x = 0 \) directly into the new limit still gives \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 4: Differentiate again Differentiate the new numerator and denominator: - **Numerator**: \[ \frac{d}{dx}(-x e^{-x^2/2} + \sin x) = -e^{-x^2/2} + x^2 e^{-x^2/2} + \cos x \] - **Denominator**: Using the product rule and chain rule: \[ \frac{d}{dx}(2x \tan^2 x + x^2 \cdot 2 \tan x \sec^2 x) \] This will be more complicated, but we can simplify it later. ### Step 5: Simplify the limit Instead of differentiating again, we can use Taylor series expansions for small \( x \): - **For \( e^{-x^2/2} \)**: \[ e^{-x^2/2} \approx 1 - \frac{x^2}{2} + O(x^4) \] - **For \( \cos x \)**: \[ \cos x \approx 1 - \frac{x^2}{2} + O(x^4) \] Thus, the numerator becomes: \[ e^{-x^2/2} - \cos x \approx \left(1 - \frac{x^2}{2}\right) - \left(1 - \frac{x^2}{2}\right) = O(x^4) \] - **For \( \tan x \)**: \[ \tan x \approx x + \frac{x^3}{3} + O(x^5) \] So, \( \tan^2 x \approx x^2 + \frac{2x^4}{3} + O(x^6) \). ### Step 6: Substitute back into the limit Now, substituting these approximations into the limit: \[ L = \lim_{x \to 0} \frac{O(x^4)}{x^2 \left(x^2 + \frac{2x^4}{3}\right)} = \lim_{x \to 0} \frac{O(x^4)}{x^4 + \frac{2x^6}{3}} = \lim_{x \to 0} \frac{O(x^4)}{x^4} = \text{constant} \] ### Step 7: Final calculation After simplifications, we find: \[ L = \frac{1}{12} \] ### Step 8: Calculate \( 3L \) Finally, we compute: \[ 3L = 3 \times \frac{1}{12} = \frac{1}{4} \] Thus, the value of \( 3L \) is \( \frac{1}{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

lim_(xrarr0) (x^(2)-3x+2)

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_( xrarr0) (1-cosx)/(x^(2))

Evaluate lim_(xrarr0)((1-cosx))/(x^(2))

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))