Home
Class 12
MATHS
The integral I=int(sin^(3)thetacos theta...

The integral `I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta` simplifies to (where, c is the constant of integration)

A

`(1)/(2)ln(sin theta)+(1)/(1+sin^(2)theta)+c`

B

`(1)/(2)[ln(1+sin^(2)theta)+(1)/(1+sin^(2)theta)]+c`

C

`ln(sin theta)+(1)/(1+sin^(2)theta)+c`

D

`ln(sin^(2)theta+1)+(1)/(sin^(2)theta+2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^3 \theta \cos \theta}{(1 + \sin^2 \theta)^2} \, d\theta, \] we can follow these steps: ### Step 1: Rewrite the Integral We can express \(\sin^3 \theta\) in terms of \(\sin^2 \theta\): \[ \sin^3 \theta = \sin^2 \theta \cdot \sin \theta = (1 - \cos^2 \theta) \sin \theta. \] Thus, we rewrite the integral: \[ I = \int \frac{(1 - \cos^2 \theta) \sin \theta \cos \theta}{(1 + \sin^2 \theta)^2} \, d\theta. \] ### Step 2: Substitution Let \(T = 1 + \sin^2 \theta\). Then, differentiating both sides gives: \[ dT = 2 \sin \theta \cos \theta \, d\theta \quad \Rightarrow \quad \sin \theta \cos \theta \, d\theta = \frac{dT}{2}. \] Now, we need to express \(\sin^2 \theta\) in terms of \(T\): \[ \sin^2 \theta = T - 1. \] ### Step 3: Substitute in the Integral Substituting \(T\) and \(dT\) into the integral, we have: \[ I = \int \frac{(T - 1) \cdot \frac{dT}{2}}{T^2}. \] This simplifies to: \[ I = \frac{1}{2} \int \frac{T - 1}{T^2} \, dT. \] ### Step 4: Break Down the Integral We can break this integral into two parts: \[ I = \frac{1}{2} \left( \int \frac{1}{T} \, dT - \int \frac{1}{T^2} \, dT \right). \] ### Step 5: Integrate Each Part Now we can integrate each part: 1. \(\int \frac{1}{T} \, dT = \ln |T|\) 2. \(\int \frac{1}{T^2} \, dT = -\frac{1}{T}\) Thus, we have: \[ I = \frac{1}{2} \left( \ln |T| + \frac{1}{T} \right) + C. \] ### Step 6: Substitute Back for \(T\) Now substitute back \(T = 1 + \sin^2 \theta\): \[ I = \frac{1}{2} \left( \ln(1 + \sin^2 \theta) + \frac{1}{1 + \sin^2 \theta} \right) + C. \] ### Final Result Therefore, the integral simplifies to: \[ I = \frac{1}{2} \ln(1 + \sin^2 \theta) + \frac{1}{2(1 + \sin^2 \theta)} + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta simplifies to (where, c is the integration constant)

The integral I=int((1)/(x.secx)-ln(x^(sinx))dx simplifies to (where, c is the constant of integration)

Let n ge 2 be a natural number and 0 lt theta lt (pi)/(2) , Then, int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta is equal to (where C is a constant of integration)

sin^(3)theta + sin theta - sin theta cos^(2)theta =

The value of int((1-cos theta)^((3)/(10)))/((1+cos theta)^((13)/(10))) d theta is equal to (where, c is the constant of integration)

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

The indefinite integral I=int((sin^(2)x-cos^(2)x)^(2019))/((sinx)^(2021)(cosx)^(2021))dx simplifies to (where c is an integration constant)

The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the constant of integration)