Home
Class 12
MATHS
Consider the function f(x)=cos^(-1)([2^(...

Consider the function `f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1)`, then
(where `[.]` represents the greatest integer part function)

A

the domain of `f(x)` is `x in(-oo, 0]`

B

the range of `f(x)` is singleton

C

`f(x)` is an even function

D

`f(x) is an odd function

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the greatest integer function.

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)