Home
Class 12
MATHS
If f(x) is continuous in [0, 1] and f((1...

If `f(x)` is continuous in `[0, 1]` and `f((1)/(3))=12`, then the value of `lim_(nrarroo)f((sqrtn)/(3sqrtn+1))` is equal to

A

2

B

3

C

12

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} f\left(\frac{\sqrt{n}}{3\sqrt{n} + 1}\right) \] ### Step 1: Simplifying the Argument of the Function First, we simplify the expression inside the function \( f \): \[ \frac{\sqrt{n}}{3\sqrt{n} + 1} \] As \( n \) approaches infinity, both the numerator and the denominator approach infinity. We can factor out \( \sqrt{n} \) from the denominator: \[ \frac{\sqrt{n}}{3\sqrt{n} + 1} = \frac{\sqrt{n}}{\sqrt{n}(3 + \frac{1}{\sqrt{n}})} = \frac{1}{3 + \frac{1}{\sqrt{n}}} \] ### Step 2: Taking the Limit Now, we take the limit as \( n \) approaches infinity: \[ \lim_{n \to \infty} \frac{1}{3 + \frac{1}{\sqrt{n}}} = \frac{1}{3 + 0} = \frac{1}{3} \] ### Step 3: Applying Continuity of \( f \) Since \( f(x) \) is continuous on the interval \([0, 1]\), we can substitute the limit we found into the function: \[ \lim_{n \to \infty} f\left(\frac{\sqrt{n}}{3\sqrt{n} + 1}\right) = f\left(\frac{1}{3}\right) \] ### Step 4: Using the Given Information From the problem, we know that \( f\left(\frac{1}{3}\right) = 12 \). ### Final Result Thus, the value of the limit is: \[ \lim_{n \to \infty} f\left(\frac{\sqrt{n}}{3\sqrt{n} + 1}\right) = 12 \] ### Conclusion The final answer is: \[ \boxed{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

For a differentiable function f(x) , if f'(2)=2 and f'(3)=1 , then the value of lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3)) is equal to

If f(1)=1,f^(prime)(1)=2, then write the value of lim_(x->1)(sqrt(f(x))-1)/(sqrt(x)-1)

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

If graph of the function y=f(x) is continuous and passes through point (3, 1) then lim_(xrarr3) (log_(e)(3f(x)-2))/(2(1-f(x))) is equal