Home
Class 12
MATHS
The least positive integral value of k f...

The least positive integral value of k for which `[(cos.(2pi)/(7),-sin.(2pi)/(7)),(sin.(2pi)/(7),cos.(2pi)/(7))]^(k)=[(1,0),(0,1)]` is

A

0

B

3

C

7

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least positive integral value of \( k \) such that: \[ \begin{pmatrix} \cos\left(\frac{2\pi}{7}\right) & -\sin\left(\frac{2\pi}{7}\right) \\ \sin\left(\frac{2\pi}{7}\right) & \cos\left(\frac{2\pi}{7}\right) \end{pmatrix}^k = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This matrix represents a rotation by an angle \( \theta = \frac{2\pi}{7} \). The matrix raised to the power \( k \) represents a rotation by \( k\theta \). ### Step 1: Set up the equation We need to find \( k \) such that: \[ k\theta = 2n\pi \] for some integer \( n \). This means that the angle \( k\theta \) must be a multiple of \( 2\pi \). ### Step 2: Substitute \( \theta \) Substituting \( \theta = \frac{2\pi}{7} \): \[ k \cdot \frac{2\pi}{7} = 2n\pi \] ### Step 3: Simplify the equation Dividing both sides by \( 2\pi \): \[ \frac{k}{7} = n \] ### Step 4: Rearranging for \( k \) From the equation above, we can express \( k \) in terms of \( n \): \[ k = 7n \] ### Step 5: Find the least positive integral value of \( k \) To find the least positive integral value of \( k \), we can set \( n = 1 \): \[ k = 7 \cdot 1 = 7 \] ### Conclusion Thus, the least positive integral value of \( k \) for which the original matrix raised to the power \( k \) equals the identity matrix is: \[ \boxed{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin ((pi)/(7))+sin((2pi)/(7)) + sin((8pi)/(7)) + sin((9pi)/(7))=0

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

Write the principal value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3)

Evaluate the following: cos(2pi/3)cos(pi/4)-sin(2pi/3)sin(pi/4)

What is the principal value of cos^(-1)cos((2pi)/3)+sin^(-1)sin((2pi)/3)?

The least positive non integral solution of "sin" pi (x^(2) + x)-"sin" pi x^(2) = 0 , is

Write the principal value of cos^(-1)(cos((2pi)/3))+sin^(-1)(sin((2pi)/3))

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

Find the value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+cos(6pi)/+cos(7pi)/7