Home
Class 12
MATHS
If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)...

If `((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4` then the value of `tanx` can be equal to

A

2

B

`(1)/(2)`

C

3

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1 + \cos 2x}{\sin 2x} + 3\left(1 + \frac{\tan x \tan x}{2}\right)\sin x = 4\), we will follow these steps: ### Step 1: Use Trigonometric Identities We know the identities: \[ \sin 2x = 2 \sin x \cos x \] \[ \cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1 \] We can also express \(\cos 2x\) and \(\sin 2x\) in terms of \(\tan x\): \[ \sin 2x = \frac{2\tan x}{1 + \tan^2 x} \] \[ \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} \] ### Step 2: Substitute the Identities Substituting these into the equation: \[ \frac{1 + \frac{1 - \tan^2 x}{1 + \tan^2 x}}{\frac{2\tan x}{1 + \tan^2 x}} + 3\left(1 + \frac{\tan^2 x}{2}\right)\sin x = 4 \] ### Step 3: Simplify the Left Side The left side simplifies to: \[ \frac{(1 + \frac{1 - \tan^2 x}{1 + \tan^2 x}) (1 + \tan^2 x)}{2\tan x} + 3\left(1 + \frac{\tan^2 x}{2}\right)\sin x \] This can be further simplified to: \[ \frac{(2 + 0) (1 + \tan^2 x)}{2\tan x} + 3\left(1 + \frac{\tan^2 x}{2}\right)\sin x \] ### Step 4: Set Up the Equation Now we have: \[ \frac{2(1 + \tan^2 x)}{2\tan x} + 3\left(1 + \frac{\tan^2 x}{2}\right)\sin x = 4 \] This simplifies to: \[ \frac{1 + \tan^2 x}{\tan x} + 3\left(1 + \frac{\tan^2 x}{2}\right)\sin x = 4 \] ### Step 5: Let \(t = \tan x\) Let \(t = \tan x\): \[ \frac{1 + t^2}{t} + 3\left(1 + \frac{t^2}{2}\right)\sin x = 4 \] ### Step 6: Solve for \(t\) From the equation, we can isolate \(t\): \[ \cot x + 3t = 4 \] Substituting \(\cot x = \frac{1}{t}\): \[ \frac{1}{t} + 3t = 4 \] ### Step 7: Multiply Through by \(t\) Multiply through by \(t\) to eliminate the fraction: \[ 1 + 3t^2 = 4t \] Rearranging gives: \[ 3t^2 - 4t + 1 = 0 \] ### Step 8: Use the Quadratic Formula Using the quadratic formula \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ t = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} \] \[ t = \frac{4 \pm \sqrt{16 - 12}}{6} \] \[ t = \frac{4 \pm 2}{6} \] ### Step 9: Find the Values of \(t\) Calculating the two possible values: 1. \(t = \frac{6}{6} = 1\) 2. \(t = \frac{2}{6} = \frac{1}{3}\) Thus, the possible values of \(\tan x\) are \(1\) and \(\frac{1}{3}\). ### Final Answer The value of \(\tan x\) can be equal to \(1\) or \(\frac{1}{3}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If L=lim_(xrarr(pi)/(4))((1-tanx)(1-sin2x))/((1+tanx)(pi-4x)^(3)) , then the value of 4 L is equal to

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

Let P(x)=((1-cos2x+sin2x)/(1+cos2x+sin2x))^2+((1+cotx+cot^2x)/(1+tanx+tan^2x)), then the minimum value of P(x) equal 1 (b) 2 (c) 4 (d) 16

Let P(x)=((1-cos2x+sin2x)/(1+cos2x+s in2x))^2+((1+cotx+cot^2x)/(1+tanx+tan^2x)), then the minimum value of P(x) equal 1 (b) 2 (c) 4 (d) 16

If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c then the value of p sinx+rcosx can be

If int(1)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx=(1)/(12)tan^(-1)(3 tanx)+C , then the value of ab , is

If 4^(sin2x+2cos^(2)x)+4^(1-sin2x+2sin^(2)x)=65 ,then(sin2x+cos2x) has the value of equal to: -1 b dot2 c. sqrt(2) d. cospi

If lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1 , then the value of p is___________.

(cos^2 x+1/(cos^2 x))(1+tan^2 2 y)(3+sin 3 z)=4, then y can take values equal to