Home
Class 12
MATHS
The value of the expression Sigma(k=0)^(...

The value of the expression `Sigma_(k=0)^(27)k.^(27)C_(k)((1)/(3))^(k)((2)/(3))^(27-k)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \sum_{k=0}^{27} k \cdot \binom{27}{k} \left(\frac{1}{3}\right)^{k} \left(\frac{2}{3}\right)^{27-k}, \] we can follow these steps: ### Step 1: Rewrite the Summation We can start by noting that when \( k = 0 \), the term becomes zero (since \( k \cdot \binom{27}{0} = 0 \)). Therefore, we can change the limits of the summation from \( k=0 \) to \( k=1 \): \[ \sum_{k=1}^{27} k \cdot \binom{27}{k} \left(\frac{1}{3}\right)^{k} \left(\frac{2}{3}\right)^{27-k}. \] ### Step 2: Use the Identity for Binomial Coefficients We can use the identity \( k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1} \). Here, \( n = 27 \): \[ k \cdot \binom{27}{k} = 27 \cdot \binom{26}{k-1}. \] Substituting this into our summation gives: \[ \sum_{k=1}^{27} 27 \cdot \binom{26}{k-1} \left(\frac{1}{3}\right)^{k} \left(\frac{2}{3}\right)^{27-k}. \] ### Step 3: Change the Index of Summation Now, we can change the index of summation by letting \( j = k - 1 \). When \( k = 1 \), \( j = 0 \) and when \( k = 27 \), \( j = 26 \): \[ 27 \cdot \sum_{j=0}^{26} \binom{26}{j} \left(\frac{1}{3}\right)^{j+1} \left(\frac{2}{3}\right)^{26-j}. \] ### Step 4: Factor Out Constants We can factor out \( \frac{1}{3} \): \[ 27 \cdot \frac{1}{3} \sum_{j=0}^{26} \binom{26}{j} \left(\frac{1}{3}\right)^{j} \left(\frac{2}{3}\right)^{26-j}. \] ### Step 5: Recognize the Binomial Expansion The remaining summation is the binomial expansion of \( \left(\frac{1}{3} + \frac{2}{3}\right)^{26} \): \[ \sum_{j=0}^{26} \binom{26}{j} \left(\frac{1}{3}\right)^{j} \left(\frac{2}{3}\right)^{26-j} = 1^{26} = 1. \] ### Step 6: Final Calculation Putting it all together, we have: \[ 27 \cdot \frac{1}{3} \cdot 1 = \frac{27}{3} = 9. \] Thus, the value of the expression is \[ \boxed{9}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expression log_(2)(1+(1)/(2) sum_(k=1)^(11) ""^(12)C_(k)) :

The value of the expression (sum_(r=0)^10 "^10 C_r)(sum_(k=0)^10 (-1)^k (^10 C_k)/2^k) is :

The coefficient of x^(50) in the expansion sum_(k=0)^(100)""^(100)C_(k)( x-2)^(100-k)3^(k) is also equal to :

If Sigma_(r=0)^(25) (""^(50)C_(r)""^(50-r)C_(25-r))=K(""^(50)C_(25)) , then K is equal to

The value of 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1)) is equal to

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

"Evaluate "Sigma_(k=1)^(11) (2+3^(k))

If Sigma_(i=1)^(20) ((""^(20)C_(i-1))/(""^(20)C_(i)+""^(20)C_(i-1)))^(3)=(k)/(21) , then k equals

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :