Home
Class 12
MATHS
Let f (theta)=(1)/(1+(tan theta)^(2021))...

Let `f (theta)=(1)/(1+(tan theta)^(2021))`, then the value of `sum_(theta=1^(@))^(89^(@))f(theta)` is equal to

A

45

B

44

C

`(89)/(2)`

D

`(91)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{\theta=1}^{89} f(\theta) = \sum_{\theta=1}^{89} \frac{1}{1 + (\tan \theta)^{2021}} \] ### Step 1: Understanding the function We start with the function: \[ f(\theta) = \frac{1}{1 + (\tan \theta)^{2021}} \] ### Step 2: Using the identity for tangent We know the identity: \[ \tan(90^\circ - \theta) = \cot(\theta) \] This means that: \[ f(90^\circ - \theta) = \frac{1}{1 + (\tan(90^\circ - \theta))^{2021}} = \frac{1}{1 + (\cot \theta)^{2021}} \] ### Step 3: Simplifying \( f(90^\circ - \theta) \) Now, we can express \( f(90^\circ - \theta) \): \[ f(90^\circ - \theta) = \frac{1}{1 + \frac{1}{(\tan \theta)^{2021}}} = \frac{(\tan \theta)^{2021}}{(\tan \theta)^{2021} + 1} \] ### Step 4: Adding \( f(\theta) \) and \( f(90^\circ - \theta) \) Now, we can add \( f(\theta) \) and \( f(90^\circ - \theta) \): \[ f(\theta) + f(90^\circ - \theta) = \frac{1}{1 + (\tan \theta)^{2021}} + \frac{(\tan \theta)^{2021}}{(\tan \theta)^{2021} + 1} \] ### Step 5: Finding a common denominator The common denominator is \( (1 + (\tan \theta)^{2021}) \): \[ = \frac{1 + (\tan \theta)^{2021}}{1 + (\tan \theta)^{2021}} = 1 \] Thus, we have: \[ f(\theta) + f(90^\circ - \theta) = 1 \] ### Step 6: Pairing terms in the sum Now, we can pair the terms in the sum \( S \): \[ S = \sum_{\theta=1}^{44} \left( f(\theta) + f(90^\circ - \theta) \right) + f(45^\circ) \] ### Step 7: Evaluating the pairs Since \( f(\theta) + f(90^\circ - \theta) = 1 \), we have: \[ S = \sum_{\theta=1}^{44} 1 + f(45^\circ) \] ### Step 8: Evaluating \( f(45^\circ) \) Now, we calculate \( f(45^\circ) \): \[ f(45^\circ) = \frac{1}{1 + (\tan 45^\circ)^{2021}} = \frac{1}{1 + 1^{2021}} = \frac{1}{2} \] ### Step 9: Completing the sum Now we can complete the sum: \[ S = 44 + \frac{1}{2} = 44.5 = \frac{89}{2} \] ### Final Answer Thus, the value of the sum is: \[ \boxed{\frac{89}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

Let f(theta)=1/(1+(cottheta)^2) , and S=sum_(theta=1^0)^(89^0)f(theta), then the value of sqrt(2S-8) is___________

If sec theta+tan theta=(1)/(2) The value of sec theta=

Let f(theta)=1/(1+(cottheta)^x)and S=sum_(theta=1^@)^(89^@) f(theta) , then the value of S is _________ .

if f(n,theta)=prod_(r=1)^(n) (1-tan^(2)(theta)/(2^(r))) then the value of lim_(thetato0) [lim_(ntoinfty) f(n,theta)] , (where [x] represent the greatest integer function) is

Let sin theta-cos theta=1 then the value of sin^(3) theta-cos^(3)theta is :

If sec theta+tan theta=(1)/(2) The value of tan theta =

What is the value of sin^2theta+1/(1+tan^2theta) ?

If sin theta=-(1)/(2) and tan theta=(1)/sqrt(3) then theta is equal to :-