Home
Class 12
MATHS
If the normals at two points (x(1),y(1))...

If the normals at two points `(x_(1),y_(1))` and `(x_(2),y_(2))` of the parabola `y^(2)=4x` meets again on the parabola, where `x_(1)+x_(2)=8` then `|y_(1)-y_(2)|` is equal to

A

`sqrt2`

B

3

C

4

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|y_1 - y_2|\) given that the normals at two points on the parabola \(y^2 = 4x\) meet again on the parabola and that \(x_1 + x_2 = 8\). ### Step-by-step Solution: 1. **Identify the points on the parabola:** The points \((x_1, y_1)\) and \((x_2, y_2)\) can be represented in terms of parameters \(t_1\) and \(t_2\): \[ (x_1, y_1) = (t_1^2, 2t_1) \quad \text{and} \quad (x_2, y_2) = (t_2^2, 2t_2) \] 2. **Use the given condition \(x_1 + x_2 = 8\):** From the problem, we know: \[ t_1^2 + t_2^2 = 8 \] 3. **Find the equations of the normals:** The equation of the normal at point \((t_1^2, 2t_1)\) is: \[ y - 2t_1 = -\frac{1}{t_1}(x - t_1^2) \] Rearranging gives: \[ y = -\frac{1}{t_1}x + \left(2t_1 + \frac{t_1^2}{t_1}\right) = -\frac{1}{t_1}x + 3t_1 \] The equation of the normal at point \((t_2^2, 2t_2)\) is: \[ y - 2t_2 = -\frac{1}{t_2}(x - t_2^2) \] Rearranging gives: \[ y = -\frac{1}{t_2}x + 3t_2 \] 4. **Find the intersection of the normals:** Set the equations of the normals equal to each other: \[ -\frac{1}{t_1}x + 3t_1 = -\frac{1}{t_2}x + 3t_2 \] Rearranging gives: \[ \left(\frac{1}{t_1} - \frac{1}{t_2}\right)x = 3(t_2 - t_1) \] Thus, \[ x = \frac{3(t_2 - t_1)}{\frac{1}{t_1} - \frac{1}{t_2}} = \frac{3(t_2 - t_1)t_1t_2}{t_2 - t_1} = 3t_1t_2 \] 5. **Find the corresponding y-coordinate:** Substitute \(x = 3t_1t_2\) into one of the normal equations: \[ y = -\frac{1}{t_1}(3t_1t_2) + 3t_1 = 3t_1 - 3t_2 = 3(t_1 - t_2) \] 6. **Calculate \(|y_1 - y_2|\):** We know: \[ |y_1 - y_2| = |2t_1 - 2t_2| = 2|t_1 - t_2| \] 7. **Find \(t_1^2 + t_2^2\) and \(t_1t_2\):** From the equations, we have: \[ (t_1 + t_2)^2 = t_1^2 + t_2^2 + 2t_1t_2 \] Let \(s = t_1 + t_2\) and \(p = t_1t_2\). We know: \[ t_1^2 + t_2^2 = 8 \quad \text{and} \quad t_1t_2 = 2 \] Therefore: \[ s^2 = 8 + 2 \cdot 2 = 12 \quad \Rightarrow \quad s = 2\sqrt{3} \] 8. **Calculate \(|t_1 - t_2|\):** We can find \(|t_1 - t_2|\) using: \[ |t_1 - t_2| = \sqrt{(t_1 + t_2)^2 - 4t_1t_2} = \sqrt{12 - 8} = \sqrt{4} = 2 \] 9. **Final calculation of \(|y_1 - y_2|\):** Thus, \[ |y_1 - y_2| = 2|t_1 - t_2| = 2 \cdot 2 = 4 \] ### Conclusion: The final answer is: \[ |y_1 - y_2| = 4 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Normals at two points (x_1y_1)a n d(x_2, y_2) of the parabola y^2=4x meet again on the parabola, where x_1+x_2=4. Then |y_1+y_2| is equal to sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) none of these

If the normals at (x_(1),y_(1)) and (x_(2) ,y_(2)) on y^(2) = 4ax meet again on parabola then x_(1)x_(2)+y_(1)y_(2)=

Let A(x_(1),y_(1)) and B(x_(2),y_(2)) be two points on the parabola y^(2) = 4ax . If the circle with chord AB as a dimater touches the parabola, then |y_(1)-y_(2)| is equal to

If normals at two points A(x_1, y_1) and B(x_2, y_2) of the parabola y^2 = 4ax , intersect on the parabola, then y_1, 2sqrt(2)a, y_2 are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If (x_(1),y_(1)) and (x_(2),y_(2)) are the ends of a focal chord of the parabola y^(2) = 4ax then show that x_(1)x_(2)=a^(2),y_(1)y_(2)= -4a^(2)

If the chords of contact of tangents from two points (x_(1),y_(1)) and (x_(2),y_(2)) to the elipse x^(2)/a^(2)+y^(2)/b^(2)=1 are at right angles, then find (x_(1)x_(2))/(y_(1)y_(2))

If the normal at(1, 2) on the parabola y^(2)=4x meets the parabola again at the point (t^(2), 2t) then the value of t, is

If the normal at (1,2) on the parabola y^(2)=4x meets the parabola again at the point (t^(2),2t) then the value of t is

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)

If the line y = mx + a meets the parabola x^(2)=4ay in two points whose abscissa are x_(1) and x_(2) then x_(1)+x_(2) =0 If