Home
Class 12
MATHS
The value of lim(xrarr0)(sin^(2)3x)/(sqr...

The value of `lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{\sin^2(3x)}{\sqrt{3 + \sec x - 2}} \), we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the limit expression to check if it results in an indeterminate form. \[ \sin^2(3 \cdot 0) = \sin^2(0) = 0 \] Next, we evaluate the denominator: \[ \sec(0) = \frac{1}{\cos(0)} = 1 \] \[ \sqrt{3 + \sec(0) - 2} = \sqrt{3 + 1 - 2} = \sqrt{2} \] So, we have: \[ \frac{\sin^2(3x)}{\sqrt{3 + \sec x - 2}} \bigg|_{x=0} = \frac{0}{\sqrt{2}} = 0 \] ### Step 2: Conclusion Since substituting \( x = 0 \) gives us \( \frac{0}{\sqrt{2}} \), which is not an indeterminate form, we conclude that: \[ \lim_{x \to 0} \frac{\sin^2(3x)}{\sqrt{3 + \sec x - 2}} = 0 \] Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (x^(2)-3x+2)

The value of lim_(xrarr0) (sinx)/(xqrt(x^2)) , is

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0+) (sinsqrt(x))/(sqrt(sinx)) is equal to

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

The value fo lim_(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x)) is equal to

The value of lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx)) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?