Home
Class 12
MATHS
The value of lim(xrarr2pi)(1-(secx)^(sec...

The value of `lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx))` is equal to

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2\pi} \frac{1 - (\sec x)^{\sec x}}{\ln(\sec x)} \), we will follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = 2\pi \) into the limit expression. \[ \sec(2\pi) = \frac{1}{\cos(2\pi)} = \frac{1}{1} = 1 \] Thus, we have: \[ 1 - (\sec(2\pi))^{\sec(2\pi)} = 1 - 1^1 = 1 - 1 = 0 \] And for the denominator: \[ \ln(\sec(2\pi)) = \ln(1) = 0 \] So we get the form \( \frac{0}{0} \), which is indeterminate. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. Let \( y = (\sec x)^{\sec x} \). Then, taking the natural logarithm of both sides: \[ \ln y = \sec x \ln(\sec x) \] Now we differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \sec x \cdot \frac{d}{dx}(\ln(\sec x)) + \ln(\sec x) \cdot \frac{d}{dx}(\sec x) \] ### Step 3: Differentiate the components We know: \[ \frac{d}{dx}(\ln(\sec x)) = \tan x \] \[ \frac{d}{dx}(\sec x) = \sec x \tan x \] Substituting these into our derivative gives: \[ \frac{1}{y} \frac{dy}{dx} = \sec x \tan x + \ln(\sec x) \sec x \tan x \] Multiplying through by \( y \): \[ \frac{dy}{dx} = y \left( \sec x \tan x + \ln(\sec x) \sec x \tan x \right) \] ### Step 4: Substitute back into the limit Now substituting back into the limit, we have: \[ \lim_{x \to 2\pi} \frac{dy/dx}{d(\ln(\sec x))/dx} \] The derivative of the denominator \( \ln(\sec x) \) is: \[ \frac{d}{dx}(\ln(\sec x)) = \sec x \tan x \] ### Step 5: Evaluate the limit Now we evaluate: \[ \lim_{x \to 2\pi} \frac{(\sec x)^{\sec x} \left( \sec x \tan x + \ln(\sec x) \sec x \tan x \right)}{\sec x \tan x} \] Substituting \( x = 2\pi \): \[ \sec(2\pi) = 1, \quad \tan(2\pi) = 0, \quad \ln(\sec(2\pi)) = 0 \] This simplifies to: \[ \lim_{x \to 2\pi} \left( 1 \cdot (0 + 0) \right) = 0 \] Thus, we find: \[ \lim_{x \to 2\pi} \frac{1 - (\sec x)^{\sec x}}{\ln(\sec x)} = -1 \] ### Final Result The value of the limit is: \[ \boxed{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(secx-(secx)^(secx))/(1-secx+ln(secx)) is equal to

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

secx=2

int(secx)/(sqrt(cos2x)) dx is equal to

int((2+secx)secx)/((1+2secx)^2)dx=

underset (xto0)lim(10^(x)-2^(x)-5^(x)+1)/(l n (secx)) is equal to

inte^(-x)(1-tanx)secx dx is equal to