Home
Class 12
MATHS
If alpha, beta and gamma are the roots o...

If `alpha, beta and gamma` are the roots of the equation `x^(3)-px^(2)+qx-r=0`, then the value of `alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta` is equal to

A

`pq+3r`

B

`pq+r`

C

`pq-3r`

D

`(q^(2))/(r )`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^2 \beta + \alpha^2 \gamma + \beta^2 \alpha + \beta^2 \gamma + \gamma^2 \alpha + \gamma^2 \beta \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 - px^2 + qx - r = 0 \), we can use Vieta's formulas and some algebraic manipulation. ### Step-by-Step Solution: 1. **Identify the coefficients using Vieta's formulas**: - From the polynomial \( x^3 - px^2 + qx - r = 0 \), we have: - \( \alpha + \beta + \gamma = p \) - \( \alpha\beta + \beta\gamma + \gamma\alpha = q \) - \( \alpha\beta\gamma = r \) 2. **Rewrite the expression**: - We need to find: \[ S = \alpha^2 \beta + \alpha^2 \gamma + \beta^2 \alpha + \beta^2 \gamma + \gamma^2 \alpha + \gamma^2 \beta \] - This can be grouped as: \[ S = \alpha(\alpha\beta + \alpha\gamma) + \beta(\beta\alpha + \beta\gamma) + \gamma(\gamma\alpha + \gamma\beta) \] 3. **Factor out common terms**: - Notice that: \[ S = \alpha(\beta + \gamma)\alpha + \beta(\alpha + \gamma)\beta + \gamma(\alpha + \beta)\gamma \] - We can express \( \beta + \gamma \) as \( p - \alpha \), \( \alpha + \gamma \) as \( p - \beta \), and \( \alpha + \beta \) as \( p - \gamma \). 4. **Substituting back**: - Substitute these into \( S \): \[ S = \alpha(p - \alpha) + \beta(p - \beta) + \gamma(p - \gamma) \] - Expanding this gives: \[ S = \alpha p - \alpha^2 + \beta p - \beta^2 + \gamma p - \gamma^2 \] - Combine like terms: \[ S = p(\alpha + \beta + \gamma) - (\alpha^2 + \beta^2 + \gamma^2) \] 5. **Using Vieta's formulas**: - We know \( \alpha + \beta + \gamma = p \), so: \[ S = p^2 - (\alpha^2 + \beta^2 + \gamma^2) \] 6. **Finding \( \alpha^2 + \beta^2 + \gamma^2 \)**: - We can use the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] - Substituting the known values: \[ \alpha^2 + \beta^2 + \gamma^2 = p^2 - 2q \] 7. **Final substitution**: - Substitute \( \alpha^2 + \beta^2 + \gamma^2 \) back into the equation for \( S \): \[ S = p^2 - (p^2 - 2q) = 2q \] ### Conclusion: Thus, the value of \( \alpha^2 \beta + \alpha^2 \gamma + \beta^2 \alpha + \beta^2 \gamma + \gamma^2 \alpha + \gamma^2 \beta \) is \( 2q \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^(2)=px^(2)+qx-r=0, then the value of sum(alphabeta)/(gamma) is equal to

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha,beta, gamma are the roots of the cubic equation 2009x^(3)+2x^(2)+1=0. then the value of alpha^(-2)+beta^(-2)+gamma^(-2) is equal to

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of the equation x^3 + qx +r=0 find the value of ( beta - gamma )^2 +( gamma - alpha)^2 +(alpha - beta)^2

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then the value of (1 + alpha^2) (1+ beta^2) (1+ gamma^2) is

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :