Home
Class 12
MATHS
If x+y=3-cos 4 theta and x-y=4sin 2 thet...

If `x+y=3-cos 4 theta` and `x-y=4sin 2 theta`,the value of `sqrtx+sqrty` is equal to

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x + y = 3 - \cos(4\theta) \) (Equation 1) 2. \( x - y = 4 \sin(2\theta) \) (Equation 2) ### Step 1: Add the two equations We add Equation 1 and Equation 2: \[ (x + y) + (x - y) = (3 - \cos(4\theta)) + (4 \sin(2\theta) \] This simplifies to: \[ 2x = 3 - \cos(4\theta) + 4 \sin(2\theta) \] ### Step 2: Solve for \( x \) Now, divide both sides by 2: \[ x = \frac{1}{2} (3 - \cos(4\theta) + 4 \sin(2\theta)) \] ### Step 3: Subtract the two equations Next, we subtract Equation 2 from Equation 1: \[ (x + y) - (x - y) = (3 - \cos(4\theta)) - (4 \sin(2\theta)) \] This simplifies to: \[ 2y = 3 - \cos(4\theta) - 4 \sin(2\theta) \] ### Step 4: Solve for \( y \) Now, divide both sides by 2: \[ y = \frac{1}{2} (3 - \cos(4\theta) - 4 \sin(2\theta)) \] ### Step 5: Find \( \sqrt{x} + \sqrt{y} \) Now we need to find \( \sqrt{x} + \sqrt{y} \). From our expressions for \( x \) and \( y \): \[ \sqrt{x} = \sqrt{\frac{1}{2} (3 - \cos(4\theta) + 4 \sin(2\theta))} \] \[ \sqrt{y} = \sqrt{\frac{1}{2} (3 - \cos(4\theta) - 4 \sin(2\theta))} \] ### Step 6: Combine the square roots We can factor out \( \sqrt{\frac{1}{2}} \): \[ \sqrt{x} + \sqrt{y} = \sqrt{\frac{1}{2}} \left( \sqrt{(3 - \cos(4\theta) + 4 \sin(2\theta))} + \sqrt{(3 - \cos(4\theta) - 4 \sin(2\theta))} \right) \] ### Step 7: Simplify the expression Let \( A = 3 - \cos(4\theta) \). Then we have: \[ \sqrt{x} + \sqrt{y} = \sqrt{\frac{1}{2}} \left( \sqrt{A + 4 \sin(2\theta)} + \sqrt{A - 4 \sin(2\theta)} \right) \] Using the identity \( \sqrt{a + b} + \sqrt{a - b} = 2\sqrt{a} \) when \( a \geq b \): \[ \sqrt{x} + \sqrt{y} = \sqrt{\frac{1}{2}} \cdot 2\sqrt{A} = \sqrt{2A} \] Substituting back for \( A \): \[ \sqrt{x} + \sqrt{y} = \sqrt{2(3 - \cos(4\theta))} \] ### Step 8: Final Calculation Since \( \cos(4\theta) \) can vary, we can conclude that the maximum value of \( \sqrt{x} + \sqrt{y} \) occurs when \( \cos(4\theta) \) is minimized, which leads to: \[ \sqrt{x} + \sqrt{y} = 2 \] Thus, the final answer is: \[ \sqrt{x} + \sqrt{y} = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x +y= 3-cos4theta and x-y=4sin2theta then

If x = 2(theta + sin theta) and y = 2(1 - cos theta) , then value of (dy)/(dx) is

If the acute formed between y - axis and the tangent drawn to the curve y=x^(2)+4x-17 at the point P((5)/(2), -(3)/(4)) is theta , the value of cot theta is equal to

If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of |cos theta| is equal to

The common area of the curves y = sqrtx and x = sqrty is equal to

If p and q are respectively the perpendiculars from the origin upon the striaght lines, whose equations are x sec theta + y cosec theta =a and x cos theta -y sin theta = a cos 2 theta , then 4p^(2) + q^(2) is equal to

If x=cos^(7)theta and y=sin theta and (d^(3)x)/(dy^(3))=105/a sin (a theta) then value of a is

Let x, y, in R satisfy the condition such that sin x sin y + 3 cos y +4 sin y cos x=sqrt(26) . The value of tan^(2)x + cot^(2)y is equal to

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.