Home
Class 12
MATHS
If the integral I=int(tanx)/(5+7tan^(2)x...

If the integral `I=int(tanx)/(5+7tan^(2)x)dx=kln |f(x)|+C` (where C is the integration constant) and `f(0)=5/7`, then the value of `f((pi)/(4))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\tan x}{5 + 7 \tan^2 x} \, dx \) and find \( f\left(\frac{\pi}{4}\right) \) given that \( I = k \ln |f(x)| + C \) and \( f(0) = \frac{5}{7} \), we will follow these steps: ### Step 1: Substitute for \( t \) Let \( t = 5 + 7 \tan^2 x \). Then, differentiate \( t \): \[ dt = 14 \tan x \sec^2 x \, dx \Rightarrow dx = \frac{dt}{14 \tan x \sec^2 x} \] ### Step 2: Rewrite the integral From the substitution, we have: \[ \tan^2 x = \frac{t - 5}{7} \quad \text{and} \quad \sec^2 x = 1 + \tan^2 x = 1 + \frac{t - 5}{7} = \frac{t + 2}{7} \] Thus, the integral becomes: \[ I = \int \frac{\tan x}{t} \cdot \frac{dt}{14 \tan x \cdot \frac{t + 2}{7}} = \int \frac{7}{14} \cdot \frac{1}{t(t + 2)} \, dt = \frac{1}{2} \int \frac{1}{t(t + 2)} \, dt \] ### Step 3: Partial fraction decomposition We can express: \[ \frac{1}{t(t + 2)} = \frac{A}{t} + \frac{B}{t + 2} \] Multiplying through by \( t(t + 2) \) gives: \[ 1 = A(t + 2) + Bt \] Setting \( t = 0 \) gives \( A = \frac{1}{2} \). Setting \( t = -2 \) gives \( B = -\frac{1}{2} \). Thus: \[ \frac{1}{t(t + 2)} = \frac{1/2}{t} - \frac{1/2}{t + 2} \] ### Step 4: Integrate Now we can integrate: \[ I = \frac{1}{2} \left( \frac{1}{2} \ln |t| - \frac{1}{2} \ln |t + 2| \right) + C = \frac{1}{4} \ln \left| \frac{t}{t + 2} \right| + C \] ### Step 5: Substitute back for \( t \) Substituting back \( t = 5 + 7 \tan^2 x \): \[ I = \frac{1}{4} \ln \left| \frac{5 + 7 \tan^2 x}{7 + 7 \tan^2 x} \right| + C \] ### Step 6: Identify \( f(x) \) From the equation \( I = k \ln |f(x)| + C \), we can identify: \[ f(x) = \frac{5 + 7 \tan^2 x}{7 + 7 \tan^2 x} \] ### Step 7: Use the condition \( f(0) = \frac{5}{7} \) At \( x = 0 \): \[ f(0) = \frac{5 + 7 \tan^2(0)}{7 + 7 \tan^2(0)} = \frac{5}{7} \] This condition is satisfied. ### Step 8: Calculate \( f\left(\frac{\pi}{4}\right) \) Now, we find \( f\left(\frac{\pi}{4}\right) \): \[ f\left(\frac{\pi}{4}\right) = \frac{5 + 7 \tan^2\left(\frac{\pi}{4}\right)}{7 + 7 \tan^2\left(\frac{\pi}{4}\right)} = \frac{5 + 7 \cdot 1}{7 + 7 \cdot 1} = \frac{12}{14} = \frac{6}{7} \] ### Final Answer Thus, the value of \( f\left(\frac{\pi}{4}\right) \) is: \[ \boxed{\frac{6}{7}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the constant of integration)

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

If the integral I=∫(-(sinx)/(x)-ln x cosx)dx=f(x)+C (where, C is the constant of integration) and f(e )=-sine , then the number of natural numbers less than [f((pi)/(6))] is equal to (where [.] is the greatest integer function)

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to