Home
Class 12
MATHS
The value of lim(nrarroo)(cos.(x)/(2)cos...

The value of `lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1)))` is equal to

A

`(x)/(sinx)`

B

`(sinx)/(x)`

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

Evaluate ("lim")_(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

The value of : lim_(x to 0) (cos x)^(1/x) is

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to