Home
Class 12
MATHS
The integral I=intsin (2theta)[(1+cos^(2...

The integral `I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta` simplifies to (where, c is the integration constant)

A

`ln|sin theta|+cos theta+c`

B

`2ln|sin theta|-(sin^(2)theta)/(2)+c`

C

`ln|sin theta|-sin^(2)theta+c`

D

`ln|cos theta|+cos^(2)theta+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

Let n ge 2 be a natural number and 0 lt theta lt (pi)/(2) , Then, int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta is equal to (where C is a constant of integration)

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

Prove that sin(2theta)/(1-cos2theta)=cot theta

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

If inte^(sintheta)(sintheta+sec^2theta)"d"theta is equal to f(theta)+C (where , C is the constant of integration) and f(0) = 0 , then the value of f(pi/4) is