Home
Class 12
MATHS
If f(x) satisfies f(x)+f(3-x)=3 AA x in ...

If `f(x)` satisfies `f(x)+f(3-x)=3 AA x in R`, then the value of integral `I=int_((3)/(4))^((9)/(4))f(x)dx` is equal to

A

3

B

6

C

`(9)/(4)`

D

`(9)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \( I = \int_{\frac{3}{4}}^{\frac{9}{4}} f(x) \, dx \) given that \( f(x) + f(3 - x) = 3 \) for all \( x \in \mathbb{R} \). ### Step-by-Step Solution: 1. **Understand the given condition**: The equation \( f(x) + f(3 - x) = 3 \) suggests a symmetry in the function \( f \). This means that for any \( x \), the values of \( f(x) \) and \( f(3 - x) \) will always sum to 3. 2. **Set up the integral**: We start with the integral: \[ I = \int_{\frac{3}{4}}^{\frac{9}{4}} f(x) \, dx \] 3. **Change of variable**: We can use the property of definite integrals to express \( I \) in terms of \( f(3 - x) \). Let \( x' = 3 - x \). Then, when \( x = \frac{3}{4} \), \( x' = 3 - \frac{3}{4} = \frac{9}{4} \), and when \( x = \frac{9}{4} \), \( x' = 3 - \frac{9}{4} = \frac{3}{4} \). Thus, we can write: \[ I = \int_{\frac{9}{4}}^{\frac{3}{4}} f(3 - x') \, (-dx') = \int_{\frac{3}{4}}^{\frac{9}{4}} f(3 - x') \, dx' \] This means: \[ I = \int_{\frac{3}{4}}^{\frac{9}{4}} f(3 - x) \, dx \] 4. **Combine the integrals**: Now we can add the two expressions for \( I \): \[ 2I = \int_{\frac{3}{4}}^{\frac{9}{4}} f(x) \, dx + \int_{\frac{3}{4}}^{\frac{9}{4}} f(3 - x) \, dx \] By the property we established, we can replace \( f(3 - x) \) using the condition \( f(x) + f(3 - x) = 3 \): \[ 2I = \int_{\frac{3}{4}}^{\frac{9}{4}} (f(x) + f(3 - x)) \, dx = \int_{\frac{3}{4}}^{\frac{9}{4}} 3 \, dx \] 5. **Evaluate the integral**: The integral simplifies to: \[ 2I = 3 \int_{\frac{3}{4}}^{\frac{9}{4}} 1 \, dx = 3 \left[ x \right]_{\frac{3}{4}}^{\frac{9}{4}} = 3 \left( \frac{9}{4} - \frac{3}{4} \right) = 3 \left( \frac{6}{4} \right) = \frac{18}{4} = \frac{9}{2} \] 6. **Solve for \( I \)**: Now, divide both sides by 2: \[ I = \frac{9}{2} \cdot \frac{1}{2} = \frac{9}{4} \] ### Final Answer: Thus, the value of the integral \( I \) is: \[ \boxed{\frac{9}{4}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(k - x) + f(x) = sin x , then the value of integral I = int_(0)^(k) f(x)dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If f(1 + x) = f(1 - x) (AA x in R) , then the value of the integral I = int_(-7)^(9)(f(x))/(f(x)+f(2-x))dx is

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

int (f'(x))/( f(x) log(f(x)))dx is equal to

If f(x)+2f(1-x)=6x(AA x in R) , then the vlaue of (3)/(4)((f(8))/(f'(1))) is equal to

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

Let f(x) be a function satisfying f\'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^2 . Then the value of integral int_0^1 f(x)g(x)dx is equal to (A) (e-2)/4 (B) (e-3)/2 (C) (e-4)/2 (D) none of these

If x^(f(x))=e^(x-f(x)) , then the value of integral int_(1)^(2)f'(x){(1+logx)^(2)}dx+1 is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is